
Bipartite Matching and Routing with Congestion Costs:

A convex approach to robot task assignment and the multi-agent pathfinding problem

Kelly Ho

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2023

Committee:

Lillian Ratliff

Sam Burden

Program Authorized to Offer Degree:

Electrical and Computer Engineering

©Copyright 2023

Kelly Ho

University of Washington

Abstract

Bipartite Matching and Routing with Congestion Costs:

A convex approach to robot task assignment and the multi-agent pathfinding problem

Kelly Ho

Chair of the Supervisory Committee:

Lillian Ratliff

Department of Electrical and Computer Engineering

Motivated by the congestion-aware path planning and task assignment problem emerging from

traffic assignment, ride-sharing, and multi-robot task assignment problems, this thesis

incorporates shortest path and assignment problems with congestion by formulating them as a

convex optimization problem to minimize the overall matching and routing cost. Two problem

settings considered are the street network of Seattle City and the multi-robot system in a

warehouse where the drivers and robots are the agents, and the delivery locations are the tasks.

We apply our formulation to the defined problem settings and introduce congestion-based cost

functions to help agents avoid congestion and reach Wardrop equilibria. Finally, we present a

Frank-Wolfe-based algorithm combined with shortest path algorithms such as Dijkstra's and A*

algorithms and matching algorithms such as the Hungarian (Kuhn-Munkres) algorithm to find the

optimal solution while considering congestion in the system. Furthermore, we extend balanced

assignments to unbalanced assignments in our simulation. The results demonstrate that the

proposed optimization problem formulation and algorithm effectively provide optimal matching

and routing solutions with congestion avoidance.

Contents

1 Introduction 3

2 Related Work 5

2.1 Traffic Assignment Problems with Congestion . 5

2.2 Traffic Assignment and Linear Assignment Problems . 6

3 Problem Setup 7

3.1 Traffic Assignment Problems with Congestion . 7

3.2 Linear Assignment Problems . 10

3.3 Proposed Problem . 11

3.3.1 Street Network Problem . 11

3.3.2 Multi-Robot Warehouse Problem . 13

4 Background Problem Formulations 15

4.1 Routing Formulations . 15

4.1.1 Routing Linear Program Formulation . 15

4.1.2 Linear Routing: Dual Derivation . 16

4.1.3 Linear Routing: KKT Conditions . 17

4.1.4 Linear Routing: Dual Interpretation . 19

4.1.5 Routing Game Convex Formulation . 19

4.1.6 Congestion Routing: Primal Formulation . 20

4.1.7 Congestion Routing: Dual Derivation . 20

4.1.8 Congestion Routing: KKT Conditions . 23

4.1.9 Congestion Routing: Further Dual Interpretation 24

4.2 Matching Linear Program Formulation . 25

4.2.1 Matching: Primal Formulation . 25

4.2.2 Matching: Dual Derivation . 26

4.2.3 Matching: KKT Conditions . 27

4.2.4 Matching: Further Dual Interpretation . 28

2

5 Matching and Routing with Congestion 29

5.1 Matching and Routing: Primal Formulation . 29

5.2 Matching and Routing: Dual Derivation . 30

5.2.1 Matching and Routing: KKT Conditions . 33

5.3 Matching and Routing: Further Dual Interpretation . 35

6 Algorithms 37

6.1 Dijkstra’s Algorithm . 37

6.2 A* Algorithm . 37

6.3 Hungarian (Kuhn-Munkres) Algorithm . 38

6.4 Frank-Wolfe Algorithm . 38

6.5 Frank-Wolfe for Matching and Routing with Congestion 40

6.5.1 Linearized Routing with Congestion and Matching 40

7 Simulation Results 43

7.1 Street Network Problem . 43

7.2 Multi-Robot Warehouse Problem . 49

8 Conclusions 53

3

List of Figures

1 Street Network of Seattle City . 12

2 50× 50 Multi-Robot Warehouse Floor . 13

3 Optimal Matching and Routing Result with Balanced Assignments 44

4 Random Assignment Matching and Routing Result . 45

5 Comparison between Hungarian Algorithm and Random Assignments 45

6 Optimal Matching and Routing Result with Little Congestion 46

7 Optimal Matching and Routing Result with Heavy Congestion 47

8 Optimal Matching and Routing Result with Unbalanced Assignments 48

9 Unbalanced Assignment Convergence of x and Minimum Assignment Costs 48

10 Optimal Matching and Routing Result with Balanced Assignments 49

11 Comparison of Turn Penalty in Convergence of x and Minimum Assignment Costs 50

12 Comparison between Hungarian Algorithm and Random Assignments 50

13 Overall Edge Flow with Random Assignments . 51

14 Optimal Matching and Routing Result with Balanced Assignments 51

15 Overall Edge Flow for Unbalanced Assignments . 52

16 Unbalanced Assignment Convergence of x and Minimum Assignment Costs 52

Acknowledgments

I would like to express my gratitude towards my academic adviser, Professor Lillian Ratliff, for accepting

me as her Master’s student and providing support for my thesis. I am grateful for her patience and wisdom

that pushed me to overcome challenges and grow enormously throughout my graduate school education.

Thank you for giving me the opportunity to work with you and believing in my ability to do well. I am

also grateful for Professor Sam Burden being one of the committee members and sharing all the advice and

support for my work. It is a great honor to work with Professor Lillian Ratliff and Professor Sam Burden,

and I will forever appreciate this experience.

I would like to acknowledge my postdoctoral advisor, Dan Calderone, who made this thesis possible.

This work is a joint effort with Dan, and I am grateful for his constant guidance and support. The mentorship

he provided me has helped me step out of my comfort zone and explore new problems and knowledge with

a great sense of achievement. Thank you for taking a chance on me and bringing me into the world of

research. It is an honor to work with Dan, and I appreciate the chance of having such a great mentor.

Finally, I would like to thank my family for their unconditional love and support in pursuing my dreams

and goals. I appreciate having you in my life and sharing all of my journeys with you. Thank you for always

believing in me and making me a better person.

1

Dedication

I would like to dedicate this thesis to my mother and grandmother who have been supporting and encourag-

ing me to achieve my dreams and overcome challenges in life. Thank you for being great role models and

providing constant love and support. I love you both and I appreciate everything that you have done for me.

2

1 Introduction

As traffic assignment problems (TAPs) and linear assignment problems (LAPs) have been applied in aero-

nautical [1], robotics [2], and operational [3] areas, there exists a wide variety and broad literature on TAPs

and LAPs. In addition, new problem formulations and algorithms are emerging to solve both TAPs and

LAPs simultaneously in ride-sharing and multi-robot task allocation (MRTA) fields. Both TAPs and LAPs

are NP-hard, meaning that the difficulty of the problem increases as the size of the problem increases. On

top of that, having more agents in the system leads to congestion or collision in the system, which causes

higher travel costs or damage to the agents. Consequently, there is literature for TAPs and LAPs to include

congestion and collision as part of the formulation and algorithm design. For instance, robot taxis search

the shortest paths to complete ride demands while avoiding congestion in traffic [4], and warehouse robots

deliver packages based on matching assignments from pods to trucks while avoiding collisions [5]. How-

ever, problem formulations and algorithms targeting all three aspects, routing, matching, and congestion or

collision, have not been formally studied. Inspired by the ride-sharing and MRTA applications, this thesis

focuses on the setup where a group of agents performs path planning from their locations to task locations

determined from the optimal matching assignment while avoiding congestion or collisions. We formulated a

convex optimization problem combining shortest path and task assignment problems with congestion. Also,

we present a Frank-Wolfe-based algorithm [6] incorporating shortest path algorithms and the matching al-

gorithm for balanced assignments. Moreover, the proposed method is extended to unbalanced assignments.

Contribution. The main contribution of the thesis is providing an optimization formulation and propos-

ing a Frank-Wolfe-based [6] algorithm combining Dijkstra’s [7] or A∗ [8] algorithms, Hungarian (Kuhn-

Munkres) [9] algorithm, and congestion-based potential functions to address shortest paths, balanced task

assignments, and congestion avoidance simultaneously. A secondary contribution is extending our algo-

rithm to unbalanced assignments with a linear program design for the matching assignment part of the

algorithm. We show equivalence between the Wardrop equilibria [10] and the global solution of the poten-

tial minimization problem with proofs and interpretation of the dual variables. Apart from that, we define

cost functions to allow agents to pick congestion-free paths and converge to Wardrop equilibrium, known

as user equilibrium, or social Wardrop equilibrium, known as system optimal [10]. Finally, our model and

algorithm are demonstrated on the street network of Seattle City where the agents are drivers delivering

3

packages to optimally assigned destinations on the shortest paths while avoiding congestion in traffic and

on a 2D autonomous warehouse problem where the agents are robots being assigned to optimal delivery

locations and navigating on shortest paths while avoiding congestion and extra turn penalty.

Organization. The rest of the thesis is arranged as follows. Section 2 presents the related work in

TAPs and LAPs. Section 3 defines the problem setup in the context of the street network of Seattle City

and the multi-robot warehouse system. Section 4 describes proofs for previous optimization formulations

of routing, matching, and congestion problems. Then, we illustrate the proposed optimization problem

formulation with proofs and dual variables interpretation. Section 5 outlines the shortest path algorithms,

such as Dijkstra’s [7] and A∗ [8] algorithms, matching algorithms, such as the Hungarian (Kuhn-Munkres)

algorithm [9], and the Frank-Wolfe algorithm [6] separately. Next, we introduce the proposed Frank-Wolfe-

based algorithm combined with the shortest path and matching algorithms. Section 6 demonstrates the

simulation results of the proposed algorithm. Finally, Section 7 concludes the thesis with an analysis of the

results and potential directions for future work.

4

2 Related Work

In this section, we discuss prior studies and related work this thesis builds upon to provide background

knowledge for analyzing results shown in Section 6. The section provides an overview of the literature that

covers TAPs and LAPs with congestion and extension to unbalanced assignments.

2.1 Traffic Assignment Problems with Congestion

Recent work in TAPs considers congestion in the network and its impact on finding the optimal routes,

specifically in ride-sharing and multi-robot task assignment applications. The paper [4] studied and incor-

porated congestion in the shared autonomous vehicle routing problem, where autonomous taxis are shared

by several passengers to provide point-to-point transportation. The authors formulated the problem as a lin-

ear program with dial-a-ride service constraints, such as considering the number of passengers or vehicles

to be routed and scheduled, time windows, and user preferences for system optimal dynamic traffic assign-

ment. Network design for ride-sharing with the use of toll lanes and its pricing has been studied in [11]

to relieve congestion and achieve ride-sharing user equilibrium [12, 13], where each user is on the optimal

route, and switching to an unused route increases the travel cost. Similarly, [14] developed a model to tackle

the congestion effect caused by e-hailing and achieve Wardrop equilibrium for solo drivers and e-hailing

service providers in the network with several components formulated as optimization problems. On top

of that, the paper [15] addressed the integrated task, which combines path planning and task assignment

problems for large-scale robot networks with uncertainties such as temporary motion and communication

failures of the robot caused by inaccurate conflict prediction. With the assumption of having an independent

task assignment algorithm, the authors focused on obtaining the optimal routing solution with congestion

and collision avoidance for each task-robot assignment part. Particularly, they designed a conflict graph

to show the travel cost of the path planning for each task-robot assignment while combining the predicted

path conflicts of any two assignments. Then, an integrated optimization problem is formulated to minimize

the total travel cost while avoiding congestion and collisions in the network and solved using the greedy

method. The aforementioned literature inspires our problem formulations and congestion cost design to

obtain optimal routing with congestion and collision avoidance. Moreover, our work is an extension of [15],

where we solve for both the optimal matching assignment and routing with a given set of agents and tasks.

5

2.2 Traffic Assignment and Linear Assignment Problems

A specific application discussed in this thesis is the MRTA problem, which aims to find the optimal assign-

ment and path planning between the robots and tasks. The solution to MRTA problems can be found through

a centralized planner by computing all robot-to-task assignment costs, such as expected travel costs, to de-

termine the optimal assignment [16]. Consequently, task allocation and coordination are two fundamental

problems in multi-robot systems. Typically, the multi-robot systems are modeled with task allocation and

coordination separated into layers, so recent work explores various formulations and algorithm designs to

concurrently handle both problems at the same level. However, there has not been much literature on finding

the optimal routing and matching solutions while avoiding congestion and collision at the same time. The

paper [17] proposed a novel framework called Co-MutaR to tackle multi-robot task allocation and coor-

dination together while enabling robots to perform multiple tasks concurrently based on the Contract Net

Protocol as a task allocator to form coalitions of actions. However, their framework did not include the

impact of congestion on assignment and routing costs. As for [2], the authors proposed a centralized system

to optimize task assignment and shared resources, which are the routes to the assigned destinations. Because

the cost of performing the tasks varies depending on different traveled routes, they introduced a penalization

term to avoid interference and congestion from agents sharing the same routes. Nonetheless, their algorithm

mainly focused on the task assignment component without path planning because the routing costs were

assumed to be given in their problem setup. While the work from [18] focused more on the path planning

component using a proposed local cooperative A∗ algorithm [8] incorporated with the conflict-based search-

ing strategy. [19] designed an algorithm solving the shortest path and matching assignment problems simul-

taneously by combining a task allocation algorithm based on market auctions and an improved A∗ shortest

path algorithm with collision avoidance. Similarly, [20] incorporated the Hungarian (Kuhn-Munkres) algo-

rithm [9] for task assignment and Dijkstra’s algorithm [7] for shortest path problems. The above literature

motivates our problem formulation incorporating task assignment and path planning with congestion and

collision avoidance for the given set of agents and tasks. Particularly, [2] leads to our congestion cost design

with an extra penalty term to prevent robots from changing directions when navigating to assigned tasks,

causing higher travel costs and times. Furthermore, we extend the work from [19] and [20] by designing

a Frank-Wolfe-based [21] algorithm combining Hungarian (Kuhn-Munkres) algorithm to solve for optimal

matching with A∗ algorithm or Dijkstra’s algorithm to solve for optimal routing.

6

3 Problem Setup

In this section, we briefly review TAPs and LAPs with congestion included and discuss the framework of

our problem setup in the context of the street network of Seattle City and the 2D autonomous multi-robot

warehouse system.

3.1 Traffic Assignment Problems with Congestion

TAPs focus on finding optimal paths for vehicles to travel from origins to destinations while satisfying

constraints such as the number of available vehicles and drivers [22]. Therefore, TAP is a combinatorial

optimization problem with the objective of minimizing the total travel costs, such as commute time, routing

costs, and congestion costs. In graph theory, TAPs can be modeled as a graph consisting of nodes connected

by edges with different weights and can be solved by searching for the shortest paths between origins and

destinations from the graph structure. This introduces the shortest path problem, which aims to find a path

between the source node and the destination node that minimizes the sum of weights (costs) associated with

the edges traveled [23].

Consider a path connected directed graph G = (V, E) with nodes V and edges E . The edge flow vector,

x ∈ R|E|, indicates the amount of traffic flow in each edge and has an associated non-decreasing and

continuous latency function in each edge, ℓe(xe). At some points in this work, we will impose the following

extra assumption on ℓe(·).

Assumption 1. ℓe(·) is strictly increasing in its argument.

Given this assumption, the inverse latency function ℓ−1
e (·) will be well-defined and strictly increasing as

well. We can organize the latency functions on each edge into a vector denoted ℓ(x) ∈ R|E| and consider

a set of paths P from an origin to a destination. For any path P ∈ P , we can define an indicator vector

ξ ∈ R|E| that tells which edges are used in that path.

(ξP)e =


1 ; if edge e is in path P

0 ; otherwise

The latency function of path P is given by the sum of the edge latencies ℓP (x) =
∑

e∈P ℓe(xe). Note

7

that given the indicator vector for the path, we can write this as

ℓP (x) =
∑
e∈P

ℓe(xe) = ℓ(x)⊤ξP (1)

Often in these problems, we consider paths that correspond to different population of people (some-

times called commodities), often distinguished by different origin-destination pairs or other distinguishing

features. For a set of populations I, we can distinguish the flow for each population i ∈ I using a super-

script. Thus, xi ∈ R|E| is the flow on the edges from population i. We denote the set of paths for each

population as P i. If there are multiple populations that all use the same edges then the total edge flow x will

be given by

x =
∑
i

xi, (2)

When it comes to designing the cost function, the cost function is linear, with no congestion present in

the system. To include congestion, the problem can be modeled as a potential game, with the cost function

being a potential function described in Definition 1.

Definition 1. (Potential Game) [24]. In game theory, a game is said to be a potential game if the incentive

of all players to change their strategy can be expressed using a single global function called the potential

function. The potential function in our problem is defined as [25]

ϕ(x) =
∑
e∈E

∫ xe

0
ℓe(s) ds, where

∂ϕ(x)

∂xe
= ℓe(xe) (3)

The potential function derived from private costs allows agents to achieve Wardrop equilibrium, also

known as user equilibrium, where each agent selfishly picks the best route, and their travel cost increases

when switching to unused routes. Therefore, a flow is stable if and only if all used paths have the same

minimal latency, whereas unused paths may have larger latency at user equilibrium.

Definition 2. (Wardrop Equilibrium) [12,13] A set of feasible flow vectors {xi}i∈I is at Wardrop equilibrium

if for every population i ∈ I and two feasible paths for that population P, P ′ ∈ P i such that some nonzero

8

portion of the population chooses path P , then

ℓP (x) ≤ ℓP ′(x) (4)

From the edge flow perspective, if mass from population i chooses path P , then xie > 0 for every e ∈ P .

Therefore, we can write the above definition more explicitly in terms of the edge flows. For paths P, P ′ ∈ P i

with indicator vectors ξ, ξ′ respectively

ℓP (x) = ℓ(x)⊤ξ ≤ ℓ(x)⊤ξ′ = ℓP ′(x) (5)

when supp(ξ) ⊆ supp(xi) where supp(·) refers to the support of a mass distribution.

By minimizing the potential function, the agents reach the Wardrop equilibrium, where all agents choose

the route that is optimal for them, and no agent can improve their cost by switching routes. The population

is likely not at the socially optimal solution for all agents (best average solution). Therefore, no agent can

personally improve their cost, and they will not switch routes. If we want to find the socially optimal solution

instead of the Wardrop equilibrium for each agent, we can minimize the social cost.

Definition 3. (Social Wardrop Equilibrium) [10]. A feasible flow vector x is at social optimum if it minimizes

the social cost,
∑

e∈E xeℓe(xe).

To reach system optimal, economists and modelers applied marginal cost road pricing as Pigouvian taxes

to facilitate socially optimal routing solutions. Based on Definition 4, the marginal cost function [26] of a

latency function shows the rate of change to total latency caused by flow changes in the edge. Specifically,

the second term of the marginal cost function indicates the increase in travel time caused by adding one

unit of flow, i.e., ℓ′(x), multiplied by all the flow, x, that suffers from this increase [27]. As a result, the

Pigouvian taxes are implemented as road tolls in our problem based on the marginal cost function to ensure

socially optimal routing instead of selfish routing.

Definition 4. (Marginal Cost Function) [28]. If ℓ is continuous and differentiable, the marginal cost is

ℓ∗(x) =
∂

∂x
(ℓ(x) ∗ x) = ℓ(x) + ℓ′(x)x (6)

9

Definition 5. (Pigouvian Taxes) [29]. A Pigouvian tax is a flow-dependent toll added to each edge to

regulate socially harmful activities and prevent the marginal private interest from dominating the marginal

social interest. For edge latency ℓe(xe) this toll is given by ℓ′e(xe)xe

3.2 Linear Assignment Problems

LAPs concentrate on finding the optimal assignment between a given set of agents and tasks while satisfying

constraints such as balanced assignments where one agent is assigned to at most one task [30]. As a result,

LAP is a combinatorial optimization problem that minimizes the total cost of the assignment, which is the

sum of the costs for each agent performing the assigned task. In graph theory, the linear assignment problem

is also the minimum weighted sum bipartite matching problem with a goal of obtaining a matching for a

minimum sum of weights of the edges [31].

Consider A to be a set of agents and T to be a set of independent tasks. Assuming that the assignment

of agent i to task j incurs a cost cij , we can construct a cost matrix, C, to show the assignment cost

between each agent and each task. When the number of agents is the same as the number of tasks, C is a

square matrix. Therefore, the overall cost function can be written as Tr(C⊤M) where M ∈ R|A|×|T | is a

permutation matrix that encodes the probability, Mij , of agent i performing task j, and gives the optimal

assignment indicated by non-zero elements.

Definition 6. (Permutation Matrix). A permutation matrix is a square matrix whose entries are all either 0

or 1, and which contains exactly one 1 entry in each row and each column, e.g.


0 1 0

1 0 0

0 0 1

.

Permutation matrices are not convex sets. However, we can write convex relaxation of LAPs by relaxing

the feasible set of permutation matrices to the set of doubly stochastic matrices, where the rows and the

columns sum to 1 as shown in Definition 7. According to Birkhoff’s theorem 1, doubly stochastic matrices

are the convex hull of permutation matrices.

As we will show explicitly in Section 4.2 and specifically Problem (12), this convex relaxation will be a

linear program. For a generic set of costs C, the optimizer of the linear program will be at a vertex, which

will correspond to a permutation matrix, and thus (generically) this convex relaxation is exact.

10

Definition 7. (Doubly Stochastic Matrix). A square matrix is doubly stochastic if all its entries are non-

negative and the sum of the entries in any of its rows or columns is 1, i.e., M1 = 1, M⊤1 = 1.

Definition 8. (Convex Hull) [32]. A set of points in an Euclidean space is defined to be convex if it contains

the line segments connecting each pair of its points. The convex hull of a given set X is the smallest convex

set containing X.

Theorem 1. (Birkhoff–von Neumann Theorem) [33]. Every doubly stochastic matrix is a convex combina-

tion of permutation matrices.

3.3 Proposed Problem

Our problem statement merges the shortest path and matching problems with congestion and further extends

it to unbalanced assignments. We first introduce the framework in the street network of Seattle City and then

move on to the autonomous multi-robot warehouse in a grid world.

3.3.1 Street Network Problem

Consider a path connected directed graph G = (V, E) with nodes V and edges E of the street network of

Seattle City. The edges are driving roads, and the nodes are the intersections of roads, as shown in Figure 1.

Let A be a set of agents and T be a set of independent tasks. Na of agents and Nt of tasks are initialized as

random nodes on the Seattle City map. The agents are the drivers delivering packages to various warehouse

locations as the tasks. In addition, the goal of the agents is to minimize the overall routing and matching cost

by obtaining optimal one-to-one matching and traveling through the shortest paths to the assigned warehouse

location while avoiding congestion in traffic as much as possible.

We model the whole problem by combining the above TAP and LAP setups with congestion. First, the

potential function in Equation (1) is set as the objective cost function, and solving the minimization of the

potential function ensures agents reach Wardrop equilibria. Then, the assignment cost, cij , of agent i and

task j is calculated as the shortest path length with congestion included between the location of agent i and

the location of task j. After populating the overall cost matrix, C, we can solve for the optimal matching

assignment, M , which encodes the corresponding shortest path traveled by agents to optimally assigned

tasks. To connect the matching problem to the routing problem, we add Mij amount of mass to edges

11

traveled in the shortest paths by the agents and thus incorporate the optimal matching information when

solving for optimal edge flow. As a result, our problem setup allows us to obtain both the optimal edge flow

and matching assignment solutions and avoid congestion by reaching Wardrop equilibria.

Figure 1: Street Network of Seattle City

For unbalanced assignments, the cost matrix, C, and the optimal matching matrix, M , become non-

square. Consequently, the M matrix is no longer a permutation matrix and is not doubly stochastic. Regard-

less, the unbalanced assignment problems can still be formulated as an optimization problem where the M

matrix has multiple non-zero elements. The constraints for the M matrix are the columns sum to 1, meaning

that a task is completed by all agents, and the rows sum to the ratio of the number of tasks divided by the

number of agents, meaning that the agents equally split the tasks. Thus, the main difference observed with

one-to-N matching is having more distributed probability in the optimal matching M matrix, and the same

street network problem setup works for unbalanced assignments.

12

3.3.2 Multi-Robot Warehouse Problem

Consider a two-dimensional grid graph G = (V, E) with nodes V and edges E . The nodes are the grids of

a warehouse floor with edges connecting each node to its four nearest neighbors, as shown in Figure 2. Let

A be a set of agents and T be a set of independent tasks. Na of agents and Nt of tasks are initialized as

random nodes on the grid map. The agents are the robots delivering packages to various delivery locations

as the tasks. The delivery locations are placed on the boundary of the grid map while the agents are placed

at random non-boundary nodes. In addition, the goal of the agents is to minimize the overall routing and

matching cost by obtaining optimal one-to-one matching and traveling through the shortest paths to the

assigned delivery location while avoiding collision. Moreover, we would like to minimize the number of

turns the robot makes to improve efficiency because it takes time for the robot to change its moving direction.

Figure 2: 50× 50 Multi-Robot Warehouse Floor

The overall problem setup for the multi-robot warehouse system is similar to the setup for the street net-

work of Seattle City. The key difference is to keep track of the number of turns robots make and incorporate

the information with the matching and routing problems. We first expand all the nodes in the grid graph in

five directions, which are center, east, west, north, and south. Each node is relabeled with the coordinate and

the direction it plans to travel next, i.e., (0, 0, W), meaning that the robot is at coordinate (0,0) and going to

travel west to the node at coordinate (0, 1). The edges of the graph are expanded as well to connect nodes

based on the additional direction information. With the new grid graph setup, we can modify the previously

13

defined potential function by adding a turn penalty term to prevent agents from making many turns when

navigating to the delivery locations.

With the additional turn penalty term, the multi-robot warehouse problem setup addresses the routing,

matching, and congestion avoidance aspects together. The optimal solutions are obtained at Wardrop equi-

libria, and the setup can be extended to solve unbalanced assignments with the same method mentioned for

the street network setup.

14

4 Background Problem Formulations

This section first discusses the linear program and convex formulations of previous results on routing games

and then talks about the linear program formulation of previous results on matching problems.

4.1 Routing Formulations

As mentioned in Section 3, we can model routing games as a directed graph with nodes connected by edges

having directions associated with them based on graph theory. Here, we consider a graph G = (V, E) with

nodes V and edges E and define the node-edge graph incidence matrices Ei, Eo, E ∈ R|V|×|E| as follows:

[
Ei]ve =


1 ; if edge e goes into node v

0 ; otherwise

[
Eo]ve =


1 ; if edge e comes out of node v

0 ; otherwise

and E = Ei − Eo which encodes the relation of node-node pairs to represent the graph structure [12, 13].

The source-sink vector S ∈ R|V| indicates the source and sink nodes as follows:

Sv =


1 ; if node v is a source

−1 ; if node v is a sink

0 ; otherwise

The source node is where flow enters the network and the sink node is where flow exits the network.

4.1.1 Routing Linear Program Formulation

After defining the graph structure, we look at the routing game. In the case with constant edge costs (no con-

gestion), the potential function in (1) becomes simply the linear function c⊤x, and we get a linear program

for computing shortest paths with constant edge weights [22]. The primal linear program is presented first

as it is formulated based on the routing game problem statement directly. Then, we show the derivation and

formulation of the dual linear program and explain the meaning of dual variables and dual problem setup.

15

Finally, the proofs of this formulation based on previous results are demonstrated.

Primal:

min
x

c⊤x (7a)

s.t. Ex = Sm, x ≥ 0 (7b)

where,

• x ∈ R|E|: an edge flow vector that gives the portion of traffic flow on each edge.

• c ∈ R|E|: a vector of constant costs for the edges.

• E ∈ R|V|×|E|: the incidence matrix of the graph.

• S ∈ R|V|: a source-sink vector indicating where the flow enters and exits the network.

• m ∈ R: the amount of population mass traveling through the network (often set to 1 for shortest path

problems).

The primal linear program is a minimization problem with the objective function (7a) being the total

travel cost from the source to the sink computed by multiplying the cost of each edge with the flow of each

edge. The constraints (7b) are the conservation of flow where the amount of flow going into a node equals

the amount of flow going out of the same node plus (or minus) any flow entering (or exiting) the graph at that

node and each edge flow is non-negative. The term Sm indicates that m units of mass enter at the source

and exit at the sink. Lastly, the solution is the optimal edge flow that achieves the minimum total travel cost

from the source to the sink while satisfying the conservation of flow.

4.1.2 Linear Routing: Dual Derivation

The dual problem provides a different perspective of understanding the problem and its objective function

allows us to find the lower bound on the primal minimization problem or the upper bound on the primal

maximization problem. We derive the dual problem by minimizing the Lagrangian function of the primal

16

problem as follows:

min
x

max
v,µ

L = min
x

max
v,µ≥0

c⊤x− v⊤(Ex− Sm)− µ⊤x = min
x

max
v,µ≥0

(c⊤ − v⊤E − µ⊤)x+ v⊤Sm

⇒ max
v,µ≥0

min
x

(c⊤ − v⊤E − µ⊤)x+ v⊤Sm = max
v,µ≥0

(
min
x

(c⊤ − v⊤E − µ⊤)x
)
+ v⊤Sm

By solving for the inner minimization problem explicitly for x, i.e., taking the derivative with respect to

x and setting it equal to 0, the dual objective function (8a) and constraints (8b) are obtained.

∂L
∂x

= c⊤ − v⊤E − µ⊤ = 0 ⇒ max
v,µ≥0

(
min
x

(c⊤ − v⊤E − µ⊤)x
)
+ v⊤Sm

= max
v,µ≥0

(
min
x

0
)
+ v⊤Sm = max

v,µ≥0
v⊤Sm

Dual:

max
v,µ

v⊤Sm (8a)

s.t. c⊤ = v⊤E + µ⊤, µ⊤ ≥ 0 (8b)

Here the dual variables have the following interpretaions that we will discuss later on.

• v ∈ R|V|: a vector of the value function on the nodes encoding the cost-to-go from the origin to the

destination.

• µ ∈ R|E|: a vector that denotes the inefficiency of using each edge.

4.1.3 Linear Routing: KKT Conditions

The rest of the subsection contains proofs for the routing game linear program formulation. We derive the

Karush–Kuhn–Tucker (KKT) conditions by taking the derivative of the Lagrangian function with respect to

the primal and dual variables and illustrate the solution obtained from the formulation is indeed optimal.

17

KKT Conditions:

Feasibility: Ex = Sm, x ≥ 0(
∂L
∂v

= −Ex+ Sm = 0 ⇒ Ex = Sm

)
Stationarity: c⊤ = v⊤E + µ⊤, µ⊤ ≥ 0(

∂L
∂x

= c⊤ − v⊤E − µ⊤ = 0 ⇒ c⊤ = v⊤E + µ⊤
)

Complementary Slackness: 0 = µ⊤x ⇐⇒ 0 = µexe, ∀e

Proof: To show that the primal problem above finds an optimal route from the source to the sink, let

ξ ∈ R|E| be an indicator vector for route r, where

ξe =


1 ; if edge e ∈ route r

0 ; otherwise

If ξ ≥ 0 is a feasible route from the source to the sink such that Eξ = S based on the feasibility

condition, we can take the stationarity condition and multiply it by ξ so that c⊤ξ = v⊤Eξ + µ⊤ξ. Then, we

can plug the feasibility condition Eξ = S into the stationarity condition to derive

∑
e∈r

ce︸ ︷︷ ︸
total travel cost

= c⊤ξ (objective function) = v⊤Eξ + µ⊤ξ (Stationarity condition)

= v⊤S + µ⊤ξ (feasibility condition) = vs − vd︸ ︷︷ ︸
optimal cost from source to sink

+ µ⊤ξ︸︷︷︸
≥0, inefficiency of route r

Note that the term vs−vd is the same for any route from the source to the sink, and the term µ⊤ξ is positive.

It follows from this that the total travel cost for any route is greater than or equal to vs − vd. Thus, vs − vd

is the optimal travel cost. This same intuition also shows that the elements of v encode optimal cost-to-go

information at each node.

If the support of ξ is contained in the support of the flow vector x at optimum, then ξe > 0 only if

xe > 0. Consequently, µ⊤x = 0 =⇒ µ⊤ξ = 0, which proves that ξ is an optimal and efficient route if and

only if it’s support is contained in the support of x.

18

4.1.4 Linear Routing: Dual Interpretation

Here, we give several further thoughts on intuition for the dual program. For the dual linear program, we

can observe that the objective function (8a) represents the minimum distance from the source to the sink

v⊤Sm = m(vsource − vsink)

scaled by the value of the mass m. This shows that the goal of the dual problem is to maximize the lower

bound of total travel cost from the source to the sink in the primal problem. The constraints (8b) describe

the edge cost as difference in the value functions between the start and end node plus the inefficiency of

taking the same edge (where the inefficiency is non-negative). Explicitly,

ce = vj − vi + µe

where edge e goes from node i to node j. When optimizing the dual function, we vary the elements of v to

maximize the difference between the source and sink nodes while making sure that vj −vi is always a lower

bound on the cost of traveling each edge e, i.e., µe ≥ 0. By maximizing the dual objective, we are trying

to increase the difference between vsource and vsink as much as possible. The set of edges that eventually

prevent us from further increasing this difference are the edges with minimum cumulative cost from the

source to the sink. The dual variables indicate the shortest path by complementary slackness, i.e., µe = 0

for any edge in the optimal route.

4.1.5 Routing Game Convex Formulation

This subsection focuses on the routing game formulated as a convex optimization problem with a non-

constant latency cost associated with each edge. This shortest path with congestion model is the center of

the traffic assignment problem. The formulation here was first introduced in [13]. A review of the literature

and many other references are found in [34]. After discussing the primal problem, we derive the dual

problem with an explanation of the meaning of the dual variables and solution. Then, we show the proofs

of this formulation based on previous results.

19

4.1.6 Congestion Routing: Primal Formulation

We now give the primal formulation for the routing game.

Primal:

min
x

∑
e

∫ xe

0
ℓe(s) ds (9a)

s.t. Ex = Sm, x ≥ 0 (9b)

where,

• x ∈ R|E|: an edge flow vector that gives the portion of traffic flow on each edge.

• ℓ(x) ∈ R|E|: a non-decreasing and continuous latency cost function for each edge as a function of x.

• E ∈ R|V|×|E|: the incidence matrix of the graph.

• S ∈ R|V|: a source-sink vector indicating where the flow enters and exits the network

• m ∈ R: the amount of population mass traveling through the network (often set to 1 for shortest path

problems).

The primal convex problem is a minimization problem with the objective function (9a) being the po-

tential function (1) to account for congestion. The constraints (9b) are the conservation of flow where the

amount of flow going into a node equals the amount of flow going out of the same node plus (or minus) any

flow entering (or exiting) the graph at that node and each edge flow is non-negative. The term Sm indicates

that m units of mass enter at the source and exit at the sink. Lastly, the solution is the optimal edge flow that

achieves the minimum total travel cost from the source to the sink while satisfying the conservation of flow.

4.1.7 Congestion Routing: Dual Derivation

For the derivation of the dual, we will make use of Assumption 1 that the latency functions ℓe(·) are strictly

increasing and thus invertible. The dual objective function in this formulation allows us to find the lower

bound on the primal minimization problem, and we derive the dual problem by minimizing the Lagrangian

20

function of the primal problem as follows:

min
x

max
v,µ

L = min
x

max
v,µ≥0

(∑
e

∫ xe

0
ℓe(s) ds

)
− v⊤(Ex− Sm)− µ⊤x

⇒ max
v,µ≥0

min
x

(∑
e

∫ xe

0
ℓe(s) ds

)
− v⊤(Ex− Sm)− µ⊤x

⇒ max
v,µ≥0

[
min
x

(∑
e

∫ xe

0
ℓe(s) ds

)
− (v⊤E + µ⊤)x

]
+ v⊤Sm

⇒ max
v,µ≥0

[
min
x

∑
e

(∫ xe

0
ℓe(s) ds−

([
v⊤E

]
e
+ µe

)
xe

)]
+ v⊤Sm

We solve for the inner minimization problem explicitly for x, i.e., taking the derivative with respect to

x and setting it equal to 0, to obtain the dual objective function (11a) and constraints (11b). The derivative

condition is given by

∂L
∂xe

= ℓe(xe)−
[
v⊤E

]
e
− µe = 0 ⇒ ℓe(xe) =

[
v⊤E

]
e
+ µe

Defining new dual variables ce =
[
v⊤E

]
e
+ µe and plugging in above gives.

max
v,µ≥0

[
min
x

∑
e

(∫ xe

0
ℓe(s) ds− cexe

)]
+ v⊤Sm = max

c,v,µ≥0
v⊤Sm−

∑
e

∫ ce

ℓe(0)
ℓ−1
e (s) ds

where on the right hand side, we have applied the Legendre transform detailed in Proposition 1 below.

Proposition 1 (Legendre Transform of Routing Game Potential).

min
xe

∑
e

∫ xe

0
ℓe(s) ds︸ ︷︷ ︸
(1)

− cexe︸︷︷︸
(2)

= −
∑
e

∫ ce

ℓe(0)
ℓ−1
e (s) ds (10)

Taking the derivative of the LHS and setting it equal to 0 gives ℓe(xe)− ce = 0 for each edge e. Given

21

Assumption 1, this gives that xe = ℓ−1
e (ce). We now make an argument based on integration by parts.

Substitutions: w = ℓe(s) ⇒ ∂w = ℓ′e(s)ds, ∂v = ∂s ⇒ v = s

Integration by Parts for (1):
∫ ℓ−1

e (ce)

0
ℓe(s) ds︸ ︷︷ ︸

(1)

= wv −
∫

vdw

=
(
ℓe(s)s|s=ℓ−1

e (ce)
s=0

)
−
∫ ℓ−1

e (ce)

0
sℓ′e(s) ds

= ℓe(ℓ
−1
e (ce))ℓ

−1
e (ce)−

∫ ℓ−1
e (ce)

0
sℓ′e(s) ds

= ceℓ
−1
e (ce)−

∫ ℓ−1
e (ce)

0
sℓ′e(s) ds︸ ︷︷ ︸

(3)

Plugging in xe = ℓ−1
e (ce) and (3) into the LHS of (10) gives

(LHS) =
∑
e

(
ceℓ

−1
e (ce)−

∫ ℓ−1
e (ce)

0
sℓ′e(s) ds︸ ︷︷ ︸

(3)

− ceℓ
−1
e (ce)︸ ︷︷ ︸
(2)

)

= −
∑
e

∫ ℓ−1
e (ce)

0
sℓ′e(s) ds

= −
∑
e

∫ ℓ−1
e (ce)

0
s dℓe(s)

(
sℓ′e(s) ds = s dℓe(s)

)
= −

∑
e

∫ ce

ℓe(0)
ℓ−1
e (s) ds (let s = ℓe(s))

The dual problem is then given by

Dual:

max
c,v,µ

v⊤Sm−
∑
e

∫ ce

ℓe(0)
ℓ−1
e (s) ds (11a)

s.t. c⊤ = v⊤E + µ⊤, µ⊤ ≥ 0 (11b)

Here the dual variables have the following interpretations.

• v ∈ R|V|: a vector of the value function on the nodes encoding the cost-to-go from the origin to the

destination.

22

• µ ∈ R|E|: a vector that denotes the inefficiency of using each edge.

4.1.8 Congestion Routing: KKT Conditions

The rest of the subsection derives the KKT conditions to prove the solution obtained is optimal for the

routing game convex problem formulation.

KKT Conditions:

Feasibility: Ex = Sm, x ≥ 0(
∂L
∂v

= −Ex+ Sm = 0 ⇒ Ex = Sm

)
Stationarity: ℓ(x)⊤ = v⊤E + µ⊤, µ⊤ ≥ 0(

∂L
∂x

= ℓ(x)⊤ − v⊤E − µ⊤ = 0 ⇒ ℓ(x)⊤ = v⊤E + µ⊤
)

Complementary Slackness: 0 = µ⊤x ⇐⇒ 0 = µexe, ∀e

Proof: To show that the primal problem above finds a traffic flow pattern x where all routes the popula-

tion uses from the source to the sink have equal minimal travel time, let ξ ∈ R|E| be an indicator vector for

route r, where

ξe =


1 ; if edge e ∈ route r

0 ; otherwise

If ξ ≥ 0 is a feasible route from the source to the sink such that Eξ = S based on the feasibility

condition similar to the linear program case, we can take the stationarity condition and multiply it by ξ so

that ℓ(x)⊤ξ = v⊤Eξ + µ⊤ξ. Then, we can plug the feasibility condition Eξ = S into the stationarity

condition to derive

23

∑
e∈r

ℓe(xe)︸ ︷︷ ︸
total travel cost

= ℓ(x)⊤ξ (objective function) = v⊤Eξ + µ⊤ξ (Stationarity condition)

= v⊤Sm+ µ⊤ξ (feasibility condition) = vs − vd︸ ︷︷ ︸
optimal cost from source to sink

+ µ⊤ξ︸︷︷︸
≥0, inefficiency of route r

The only difference here with the non-congested case is that the edge costs ℓ(x) now depend on the

flow x. As in the uncongested case, µ⊤ξ = 0 if and only if the support of ξ is contained in the support of

the population flow vector x. Consequently, µ⊤x = 0 =⇒ µ⊤ξ = 0, which proves that ξ is an optimal

and efficient route if and only if its support is contained in the support of x. Moreover, this condition is

equivalent to Equation 5 in the definition of a Wardrop equilibrium (Definition 2). For two paths P, P ′ from

the source to the sink with indicator vectors ξ, ξ′ respectively where the support of ξ is in the support of x

ℓP (x) = ℓ(x)⊤ξ = ℓ(x)⊤ξ′ + µ⊤ξ′ ≤ ℓ(x)⊤ξ′ = ℓP ′(x)

Intuitively, this means that any path taken by agents in the population is optimal. Due to the congestion

effects encoded in ℓ(x), the population mass will often spread out over multiple routes; however, the analysis

above guarantees that all those routes will have equal travel time at equilibrium.

4.1.9 Congestion Routing: Further Dual Interpretation

To get some intuition for the dual optimization problem, we note the following. The dual problem is the

same as the non-congestion version of the Problem (8) except that c is an optimization variable (as opposed

to constant), and there is also the additional sum penalty term in the objective.

The same intuition applies when we are trying to increase the term v⊤Sm. Since the source-sink vector,

S, and mass on nodes, m, are fixed, the value of this term increases when the difference of v between the

source and the sink becomes larger. Now, rather than ce providing a hard limit on how much the elements

of v can differ along edge e, we are allowed to increase the value ce. We will, however, pay a penalty term

in the objective determined by the term
∫ ce
ℓe(0)

ℓ−1
e (s) ds.

Since the variable c must satisfy the equality constraint (8b), we can first increase the value of v by

24

decreasing µ as much as possible. However, for the edges where µe = 0, we have to start increasing ce to

further increase the difference in v along that edge and pay the penalty defined by the integral term above.

Intuitively, we can see that for positive ℓe(·) this integral term gets larger as the upper bound increases, i.e.,∫ ℓe(0)
ℓe(0)

ℓ−1
e (s) ds = 0 and

∫ ce
ℓe(0)

ℓ−1
e (s) ds > 0 for ce > ℓe(0). Thus, if we are to increase ce above its

non-congestion value ℓe(0), we may be able to increase the difference in the elements of v, but we will pay

a penalty determined by −
∫ ce
ℓe(0)

ℓ−1
e (s) ds.

At optimum, a balance is achieved where we increase the difference defined by v⊤Sm as much as

possible while increasing the values of ce on as few edges as possible. This process has the effect of

spreading out which edges are used across the graph. From the KKT analysis above, we can see that this

balance is precisely such that the costs on the edges where µe = 0 form constant cost optimal paths from

the source to the sink. Therefore, intuitively we can think of the purpose of the dual problem as maximizing

the lower bound of the total travel cost from the source to the sink in the primal problem while minimizing

the congestion impact on each edge’s latency cost.

4.2 Matching Linear Program Formulation

The following linear program with A as a set of agents and T as a set of tasks is the convex relaxation that

solves the linear sum assignment problem, where the numbers of agents and tasks are equal. The variables

in the dual problem correspond to the potentials from the well-known Hungarian algorithm [5]. The section

presents the primal linear program and shows the derivation and formulation of the dual linear program with

the meaning of dual variables and the dual problem setup provided. Finally, the proofs of this formulation

based on the paper [35] are discussed.

4.2.1 Matching: Primal Formulation

The primal formulation for the matching problem can be given as follows.

Primal:

min
M

Tr(C⊤M) (12a)

s.t. M1 = 1, M⊤1 = 1,M ≥ 0 (12b)

25

where,

• M ∈ R|A|×|T |: a doubly stochastic matrix showing the probability, Mij , of agent i performing task j.

• C ∈ R|A|×|T |: the assignment cost matrix between agent i and task j.

The primal linear program is a minimization problem with the objective function (12a) being the overall

assignment cost by taking the trace of the product of the cost matrix and the matching assignment matrix.

The constraints (12b) ensure M matrix is doubly stochastic in Definition 7 with non-negative elements. On

top of that, the constraints confirm each agent is assigned to only one task. Consequently, the solution gives

an optimal one-to-one matching between agents and tasks with the minimum overall assignment.

4.2.2 Matching: Dual Derivation

The dual objective function in this formulation allows us to find the lower bound on the primal minimization

problem, and we derive the dual problem by switching the min and max and enforcing the minimization

condition for M as a constraint as follows:

min
M

max
u,w,U≥0

L = min
M

max
u,w,U≥0

Tr(C⊤M)− u⊤(M1− 1)− w⊤(M⊤1− 1)− U⊤M

⇒ max
u,w,U≥0

min
M

Tr(C⊤M)− u⊤M1+ u⊤1− w⊤M⊤1+ w⊤1− U⊤M

⇒ max
u,w,U≥0

min
M

Tr(C⊤M)− Tr(u⊤M1)− Tr(w⊤M⊤1)− U⊤M + (u⊤1+ w⊤1)

⇒ max
u,w,U≥0

[
min
M

Tr(C⊤M)− Tr(1u⊤M)− Tr(1w⊤M⊤)− U⊤M

]
+ (u⊤1+ w⊤1)

where we have used the cyclic property of the trace, ie. Tr(ABC) = Tr(CAB) = Tr(BCA).

By solving for the inner minimization problem explicitly for M , i.e., taking the derivative with respect

to M and setting it equal to 0, the dual objective function (13a) and constraints (13b) are obtained.

∂L
∂M

= C − u1⊤ − 1w⊤ − U = 0 ⇒ C = u1⊤ + 1w⊤ + U

⇒ max
u,w,U≥0

[
min
x

Tr
(
C − u1⊤ − 1w⊤ − U

)⊤
M
)]

+ (u⊤1+ w⊤1)

⇒ max
u,w,U≥0

(
min
x

0
)
+ (u⊤1+ w⊤1) ⇒ max

u,w,U≥0
u⊤1+ w⊤1

26

The dual problem is then given by the following.

Dual:

max
u,w,U

u⊤1+ w⊤1 (13a)

s.t. C = u1⊤ + 1w⊤ + U, U ≥ 0 (13b)

where,

• u ∈ R|A|: a vector of row potential as the minimum cost each agent needs to perform at least one task.

• w ∈ R|T |: a vector of column potential as the additional minimum cost on top of u each task required.

• U ∈ R|A|×|T |
+ : a matrix that denotes the inefficiency of pairing agent i with task j.

4.2.3 Matching: KKT Conditions

The rest of the subsection contains the KKT conditions to prove the solution obtained is optimal for the

matching linear problem formulation.

KKT Conditions:

Feasibility: M1 = 1, 1⊤M = 1⊤, M ≥ 0(
∂L
∂u

= −M1+ 1 = 0 ⇒ M1 = 1

)
(
∂L
∂w

= −M⊤1+ 1 = 0 ⇒ M⊤1 = 1

)
Stationarity: C = u1⊤ + 1w⊤ + U, U ≥ 0

(elementwise) Cij = ui + wj + Uij , Uij ≥ 0, ∀i, j(
∂L
∂M

= C − u1⊤ − 1w⊤ − U = 0 ⇒ C = u1⊤ + 1w⊤ + U

)
Complementary Slackness: 0 = Tr(U⊤M) =

∑
ij

UijMij ⇐⇒ 0 = UijMij , ∀i, j

Proof: To verify if the matching assignment obtained is optimal in the primal problem, let Ξ ≥ 0 ∈

27

R|A|×|T | be a permutation matrix that defines a particular agent task assignment

Ξij =


1 ; if agent i performs task j

0 ; otherwise

If Ξ ≥ 0 is a feasible assignment then 1⊤Ξ = 1⊤ and Ξ1 = 1. Taking the stationarity condition, multiply

it by Ξ and taking a trace, and then substituting in the feasibility condition gives

Tr(C⊤Ξ)︸ ︷︷ ︸
overall assignment cost

= Tr(1u⊤Ξ) + Tr(w1⊤Ξ) + Tr(U⊤Ξ) (Stationarity condition)

= Tr(Ξ1u⊤) + Tr(w1⊤Ξ) + Tr(U⊤Ξ)

= Tr(1u⊤) + Tr(w1⊤) + Tr(U⊤Ξ) (feasibility conditions)

= u⊤1+ 1⊤w︸ ︷︷ ︸
optimal matching cost

+ Tr(U⊤Ξ)︸ ︷︷ ︸
≥0, inefficiency of matching

Note here that the term u⊤1+ 1⊤w is independent of the assignment and also that Tr(U⊤Ξ) is always

positive. It follows then that the overall assignment cost is always greater than or equal to u⊤1+ 1⊤w and

thus u⊤1+ 1⊤w represents the optimal assignment cost. The term Tr(U⊤Ξ) then refers to the inefficiency

of the assignment Ξ.

Ξ represents an optimal assignment if the support of Ξ is contained in the support of the optimal assign-

ment M , ie. Ξij > 0 only if Mij > 0. Consequently, Tr(U⊤M) = 0 =⇒ Tr(U⊤Ξ) = 0, which proves

that Ξ is an optimal and efficient matching assignment. Since the optimization problem is linear for generic

costs C, the optimal M will lie at a vertex of the feasible set, ie. M will be a permutation matrix.

4.2.4 Matching: Further Dual Interpretation

The goal of the dual objective function (13a) is to maximize the minimum assignment cost of each pairing

agent i and task j represented by the sum of the row and column potential and maximize the lower bound

of the overall assignment cost. The constraints (13b) describe that the assignment cost equals the sum of the

minimum cost and the inefficiency of each pairing agent i and task j, where the inefficiency is non-negative.

An inefficient assignment means that the pairing of agent i and task j is not the most optimal. Therefore, the

28

solution to the dual problem can be found by maximizing the minimum overall assignment cost as much as

possible while ensuring that each matching pair is optimal or suboptimal, i.e., having a positive inefficiency.

5 Matching and Routing with Congestion

After defining the primal and dual problems of routing games with or without congestion and balanced

assignment problems, we demonstrate our proposed problem formulations for combining the matching as-

signment problem and routing games in this section. We will show that our formulation finds an optimal

matching of agents to tasks when costs for each agent-task pairing are travel times in a congested network.

Our optimization formulation solves for a population traffic flow pattern that ensures 1) that members in

the population take only routes with minimal travel times in the presence of congestion, i.e., satisfying the

Wardrop equilibria condition, and 2) that assignment of agents to tasks minimizes the overall assignment

cost. Since our formulation is now convex instead of linear as in the original matching problem, our as-

signment will take the form of a probabilistic matching where sometimes a single task is split between

multiple agents and/or a single agent performs multiple tasks. In this section, we derive both the primal

and dual problems with explanations of variables and problem setup meaning and then prove our problem

formulation gives an optimal matching for costs determined by a Wardrop equilibrium routing solution.

5.1 Matching and Routing: Primal Formulation

We first present the primal form of our optimization problem.

Primal:

min
xij ,Mij

∑
e

∫ xe

0
ℓe(s) ds (14a)

s.t. xe = Σijxije, ∀e (14b)

Eijxij = SijMij , xij ≥ 0, ∀i, j (14c)

M1 = 1, M⊤1 = 1, M ≥ 0 (14d)

for edge e and matching between agent i and task j, where

• xij ∈ R|E|: an edge flow vector that gives the portion of traffic flow on each edge corresponding to

29

agent i performing task j.

• ℓ(x) ∈ R|E|: a non-decreasing and continuous latency cost function for each edge as a function of x.

• Eij ∈ R|V|×|E|: the incidence matrix of the graph associated with agent i and task j

• Sij ∈ R|V|: a source-sink vector indicating where the flow enters and exits the network for agent i

performing task j.

• M ∈ R|A|×|T |: a doubly stochastic matrix showing the probability, Mij , of agent i performing task j.

Constraint (14b) means the flow in edge e is the sum of the flow of all agents traveling edge e. Constraints

(14c) and (14d) account for the conservation of flow in the route taken by each matching pair, agent i and

task j, and M matrix being doubly stochastic. Besides, the conservation of flow considers the matching

assignment by indicating the source and the sink being associated with the locations of agent i and task j.

In addition, both the edge flow vector and assignment matrix have non-negative elements.

The primal problem is a minimization problem with the objective function (14a) being the routing game

potential function (1). Note that even though we are combining the routing and matching problem, only

the routing game objective shows up in the objective of the joint problem. We will see from the KKT

conditions below that this formulation will cause agents to choose routes in a similar way to the Wardrop

equilibrium case, and the dual variables at equilibrium will transmit cost information about the shortest path

to the matching portion of the optimization problem.

5.2 Matching and Routing: Dual Derivation

The dual objective function in this formulation allows us to find the lower bound on the primal minimization

problem, and we derive the dual problem by minimizing the Lagrangian function of the primal problem

as follows. To simplify some of the analysis, rather than including the constraints xe =
∑

ij xije in the

Lagrangian, we substitute them into the objective first and then get the Lagrangian.

min
xij ,Mij

max
c,wij ,vij ,
uij ,µij ,Uij

L = min
xij ,Mij

max
c,wij ,vij ,
uij ,µij ,Uij

(∑
e

∫ ∑
ij xije

0
ℓe(s)ds

)
−
(∑

ij

v⊤ij(Eijxij − SijMij)− µ⊤
ijxij

)

− u⊤(M1− 1)− w⊤(M⊤1− 1)− Tr(U⊤M)

30

Grouping terms, we get

⇒ max
c,wij ,vij ,
uij ,µij ,Uij

min
xij

∑
e

∫ ∑
ij xije

0
ℓe(s) ds−

∑
ij

([
v⊤ijEij

]
e
+ µije

)
xije


︸ ︷︷ ︸

L1

+min
Mij

∑
ij

(
v⊤ijSijMij − uiMij − wjMij − UijMij

)
︸ ︷︷ ︸

L2

+u⊤1+ w⊤1

First, we solve for the first inner minimization problem explicitly for xije by taking the derivative with

respect to xije and setting it equal to 0 for each xije. Note that

f(x) =
∑
e

∫ ∑
ij xije

0
ℓe(s) ds ⇒ ∂f

∂xije
= ℓe

∑
ij

xije

 ∂
∂xije

∑
ij

xije


= ℓe

∑
ij

xije

 · (1) = ℓe

∑
ij

xije

 = ℓe(xe).

Differentiating the L1 term in the Lagrangian then gives

∂L1

∂xije
= ℓe(xe)−

[
v⊤ijEij

]
e
− µ⊤

ije) = 0 ⇒ ℓe(xe) =
[
v⊤ijEij

]
e
+ µije

Defining a new dual variable ce equal to the quantity ℓe(xe), i.e., ce = ℓe(xe) =
[
v⊤ijEij

]
e
+ µije, we get

min
xij

L1 = min
xij

∑
e

∫ xe

0
ℓe(s) ds−

∑
ij

ℓe(xe)xije


= min

xij

∑
e

∫ xe

0
ℓe(s) ds− ℓe(xe)

∑
ij

xije


= min

xij

∑
e

[∫ xe

0
ℓe(s) ds− cexe

]
= −

∑
e

∫ ce

ℓe(0)
ℓ−1
e (s) ds

where in the last step we have applied Proposition 1 (the Legendre transform).

Second, we solve the second inner minimization problem explicitly for Mij by taking the derivative with

31

respect to Mij and setting it equal to 0 as well.

∂L2

∂Mij
= v⊤ijSij − ui − wj − Uij = 0 ⇒ v⊤ijSij = ui + wj + Uij

It follows then that

min
Mij

L∈ = min
Mij

∑
ij

(
v⊤ijSijMij − uiMij − wjMij − UijMij

)
= min

Mij

∑
ij

(
v⊤ijSij − ui − wj − Uij

)
Mij

= 0

The results from the two inner minimization problems give us the dual objective function (14a) and con-

straints (14). Plugging back in we get

max
c,wij ,vij ,
uij ,µij ,Uij

min
xij ,Mij

L = max
c,wij ,vij ,
uij ,µij ,Uij

min
xij ,Mij

∑
e

∫ ∑
ij xije

0
ℓe(s) ds−

∑
ij

([
vijEij

]
e
+ µije

)
xije


︸ ︷︷ ︸

(1)

+
∑
ij

(
v⊤ijSijMij − uiMij − wjMij − UijMij

)
︸ ︷︷ ︸

(2)

+u⊤1+ w⊤1

= max
c,wij ,vij ,
uij ,µij ,Uij

(
−
∑
e

∫ ce

ℓe(0)
ℓ−1
e (s) ds

)
+ u⊤1+ w⊤1

⇒ max
c,wij ,vij ,
uij ,µij ,Uij

∑
ij

ui + wj

−

(∑
e

∫ ce

ℓe(0)
ℓ−1
e (s) ds

)

Finally, the dual problem is given by

Dual:

max
c,wij ,vij ,
uij ,µij ,Uij

∑
ij

ui + wj

−

(∑
e

∫ ce

ℓe(0)
ℓ−1
e (s) ds

)
(15a)

s.t. c⊤ = v⊤ijEij + µ⊤
ij , µ

⊤
ij ≥ 0, ∀ i, j (15b)

v⊤ijSij = ui + wj + Uij , Uij ≥ 0, ∀ i, j (15c)

32

5.2.1 Matching and Routing: KKT Conditions

The rest of the subsection derives the KKT conditions to prove the solution obtained is optimal for the

matching and routing problem formulation with congestion.

KKT Conditions:

Feasibility: Eijxij = SijMij , xij ≥ 0, ∀i, j

M1 = 1, M⊤1 = 1, M ≥ 0

xe = Σijxije, ∀e(
∂L
∂v

= −Eijxij + SijMij = 0 ⇒ Eijxij = SijMij

)
(
∂L
∂u

= −M1+ 1 = 0 ⇒ M1 = 1

)
(
∂L
∂w

= −M⊤1+ 1 = 0 ⇒ M⊤1 = 1

)

Stationarity: ℓ(x)⊤ = c⊤

c⊤ = v⊤ijEij + µ⊤
ij , µ

⊤
ij ≥ 0, ∀i, j

Cij = v⊤ijSij , ∀i, j

C = u1⊤ + 1w⊤ + U, U ≥ 0

(elementwise) v⊤ijSij = ui + wj + Uij , Uij ≥ 0, ∀i, j(
∂L
∂xije

= ℓe(xe)− vijeEije − µije = 0 ⇒ ℓ(x)⊤ = v⊤ijEij + µ⊤
ij

)
(

∂L
∂Mij

= v⊤ijSij − ui − wj − Uij = 0 ⇒ v⊤ijSij = ui + wj + Uij

)

Complementary Slackness: 0 = µ⊤x ⇐⇒ 0 = µexe, ∀e

0 = Tr(U⊤M) =
∑
ij

UijMij ⇐⇒ 0 = UijMij , ∀i, j

Proof: We now show that our optimization problem finds an optimal matching (in the relaxed matching

space) where the costs for each agent-task pair are determined by the shortest path in the presence of con-

33

gestion. We will show that at optimum, agents only take optimal routes from the origins to destinations and

that the overall agent-task assignment is done to minimize the overall matching cost.

Let Ξ ≥ 0 ∈ R|A|×|T | be a permutation matrix that represents a specific agent-task assignment and let

ξij ∈ R|E| for each i, j be indicator vectors for the routes chosen by each agent in order to complete their

task. If Ξ ≥ 0 is a feasible assignment, then 1⊤Ξ = 1⊤, and Ξ1 = 1. If ξij ≥ 0 is a feasible route for task

pairing i, j, then Eijξij = Sij . As in the simple routing game case, right multiplying the routing stationarity

condition by ξij for a feasible route, and substitute in the feasibility condition gives

∑
e∈r

ℓe(xe)︸ ︷︷ ︸
total travel cost

= ℓ(x)⊤ξij (objective function) = v⊤ijEijξij + µ⊤
ijξij (Stationarity condition) (16a)

= v⊤ijSij︸ ︷︷ ︸
optimal cost from source to sink

+ µ⊤
ijξij︸ ︷︷ ︸

route inefficiency

(feasibility condition) (16b)

As in the original routing problem for each agent-task pairing i, j, µ⊤
ijξij is positive and v⊤ijSij is independent

of the route chosen. Thus, v⊤ijSij represents the optimal travel time for that pairing, and µ⊤
ijξij represents

the inefficiency of the route.

Multiplying the matching stationarity conditions by Ξ, taking the trace, and substituting in the feasibility

condition, we get

Tr(C⊤Ξ) = Tr(1u⊤Ξ + w1⊤Ξ + U⊤Ξ) (17a)

= u⊤1+ 1⊤w + Tr(U⊤Ξ) (17b)

⇒
∑
ij

CijΞij︸ ︷︷ ︸
matching cost

= u⊤1+ 1⊤w︸ ︷︷ ︸
optimal matching cost

+ Tr(U⊤Ξ)︸ ︷︷ ︸
≥0, inefficiency of
of assignment i to j

(17c)

The key connection between the routing and matching portions of the problem is given by the stationarity

condition Cij = v⊤ijSij for each i, j. This condition ensures that the costs for the matching problem are

indeed the shortest path costs in the congested network. Combining this with equation (16b) we get

Cij = ℓ(x)⊤ξij − µ⊤
ijξij

34

and then finally substituting into (17c) we get

∑
ij

ℓ(x)⊤ξij = u⊤1+ 1⊤w︸ ︷︷ ︸
optimal matching cost

+ Tr(U⊤Ξ)︸ ︷︷ ︸
≥0, inefficiency of
of assignment i to j

+
∑
ij

µ⊤
ijξij︸ ︷︷ ︸

≥0, inefficiency of route r

As in the original matching problem, u⊤1+ 1⊤w is independent of the matching, Tr(U⊤Ξ) and
∑

ij µ
⊤
ijξij

are positive, and thus u⊤1+1⊤w represents the optimal matching cost. Tr(U⊤Ξ) is any inefficiency due to

a suboptimal matching;
∑

ij µ
⊤
ijξij is any inefficiency due to sub-optimal routing.

If ξij represents an optimal route for agent i with task j, i.e., the support of ξij is contained in the support

of the optimal flow xij , then ξij > 0 only if xij > 0. Consequently, µ⊤
ijxij = 0 =⇒ µ⊤

ijξij = 0, which

proves that ξij is an optimal and efficient route for agent i and task j. If Ξ represents an optimal assignment,

i.e., the support of Ξ is contained in the support of the optimal assignment M , then Ξ > 0 only if M > 0.

Consequently, Tr(U⊤M) = 0 =⇒ Tr(U⊤Ξ) = 0, which proves that Ξ is an optimal and efficient matching

assignment.

Moreover, this proves that the optimal route, ξij , for each optimal assignment pair agent i and task j

achieves Wardrop equilibrium based on the Definition 2 and Equation 5, where for paths P, P ′ ∈ P i with

mass from agent i and indicator vectors ξij , ξ′ij respectively,

ℓP (x) = ℓ(x)⊤ξij ≤ ℓ(x)⊤ξ′ij = ℓP ′(x)

5.3 Matching and Routing: Further Dual Interpretation

The dual objective function (15a) represents the summed minimum assignment cost of each pairing agent

i and task j computed by the sum of the row and column potential minus the sum of penalty terms for

increasing the edge costs ce above the uncongested costs ℓe(0). As in the matching problem, our goal is to

increase the row and column potential variables as much as possible in order to find a better lower bound

for the optimal matching. Due to constraint (15c), we can increasing u and w by initially by reducing U but

eventually we will have to increase the term v⊤ijSij if we want to increase u and w further. As in the routing

game problem due to constraint (15b), increasing v⊤ijSij can be done initially be reducing µij but eventually

we will have to increase the values in c incurring a penalty defined by the integral terms in the objective. As

35

in the routing game formulation, we want to increase this value v⊤ijSij as much as possible while receiving

as little penalty as possible for increasing ce above ℓe(0). Note that the edge cost vector c must be an

upper bound on v⊤ijEij for each agent-task assignment i, j. Thus, increasing the v⊤ijSij term for any task

assignment pair could force us to push up an element of c and pay the penalty term
∫ ce
ℓe(0)

ℓe
−1(u) ds. The

dual problem then seeks to maximize the minimum assignment cost between the set of agents and tasks

while not paying too much penalty for increasing any given edge cost too much.

36

6 Algorithms

This section introduces Dijkstra’s algorithm [7] and A∗ algorithm [8] for solving shortest path problems,

the Hungarian algorithm [9] for solving assignment problems, and Frank-Wolfe algorithm [6] for solving

constrained convex optimization problems as these algorithms are implemented in our proposed algorithm.

Next, the Section presents the structure of the proposed algorithm for finding the optimal assignment and

the corresponding optimal route between agent i and task j while considering congestion simultaneously.

6.1 Dijkstra’s Algorithm

Dijkstra’s algorithm aims to find the shortest path between nodes in a weighted graph, G = (V, E ,W), with

nodes V , weighted edges E , and weight function W . Dijkstra’s algorithm first separates all the nodes into

two sets, VE and VU , where VE contains a set of nodes with the determined shortest path to vs, while VU

contains a set of nodes with undetermined shortest paths to vs. With VE being initialized to have only vs,

the algorithm finds the shortest path between vs and a node in VU and then moves the node from VU to VE

sorted by the corresponding shortest path length until there are no nodes in VU . The shortest path length is

the sum of the corresponding weights in the shortest path from vs and any node in VU . Consequently, we

obtain the shortest paths from vs to any nodes vi as well as the shortest path from vs to the destination node,

vd. The flowchart of Dijkstra’s algorithm is denoted in Algorithm 1.

6.2 A* Algorithm

The A∗ algorithm is based on the approach of Dijkstra’s method but eliminates unnecessary searches by

adding a heuristic function to accelerate the rate of finding the shortest path from the source node, vs, to

the destination node, vd. Consider a weighted graph, G = (V, E ,W), with nodes V , weighted edges E , and

weight function W . VO contains the set of discovered nodes that may need to be expanded, while Ps records

the shortest path from vs to vd. In addition, the evaluation function is defined as f(vi) = g(vi) + h(vi),

where g(vi) is the cost of the path from vs to vi while h(vi) is selected to be the Euclidean distance from vi

to vd. The algorithm chooses the lowest cost nodes to extend the path starting from vs until reaching vd as

demonstrated in Algorithm 2.

37

Algorithm 1 Dijkstra’s Algorithm
Input: An edge-weighted graph, G = (V, E ,W), with nodes V , weighted edges E , weight function W .
Let the source node be vs and the destination node be vd.
Output: Shortest path and the length, d(vd), from the source node vs to the destination node vd in G.
Initialization: VE = {vs}, VU = V − VE , d(vs) = 0.

for vi in V do
if vi is a neighbor of vs then

d(vi) = min(W (vs, vi))
else

d(vi) = ∞
end

end
while VU is not empty do

wi = argminwi ̸∈VE
{d(wi)}

VU = VU/{wi}
VE = VE ∪ {wi}
for vi ̸∈ VE do

if vi is a neighbor of vs then
d(vi) = min(d(vi), d(wi) +W (wi, vi)

end
end

end
return VE , d(vd)

6.3 Hungarian (Kuhn-Munkres) Algorithm

Here, we give a description of the classical Hungarian or Kuhn-Munkres algorithm for matching in a

weighted bipartite graph. The input is the assignment cost matrix, C, between the agents and tasks, while

the output is the optimal matching assignment matrix, M , where both C and M are square matrices with

non-negative values. In Algorithm 3, we follow the algorithmic form given in [36].

6.4 Frank-Wolfe Algorithm

Suppose the objective function f is convex and continuously differentiable, and the domain D is a compact

convex set in a vector space. Frank-Wolfe algorithm described in Algorithm 4 solves such optimization

problems by considering the linearization of the objective function and moving towards a minimizer of this

linear function.

38

Algorithm 2 A∗ Algorithm
Input: An edge-weighted graph, G = (V, E ,W), with nodes V , weighted edges E , weight function W .
Let the source node be vs and the destination node be vd.
Output: Shortest path, Ps and the length, f(vd), from the source node vs to the destination node vd in G.
Initialization: VO = {vs}, Ps = {}, g(vi) = ∞, f(vs) = g(vs) + h(vs) = 0 + h(vs) = h(vs).
while VO is not empty do

vi = argminvi∈VO
{f(vi)}

if vi = vd then
Ps = Ps ∪ {vi}

return Ps

end
VO = VO/{vi}
for wi such that (vi, wi) ∈ E do

g(wi)tentative = g(vi) +W (wi, vi)
if g(wi)tentative < g(wi) then

Ps = Ps ∪ {vi}
g(wi) = g(wi)tentative
f(wi) = g(wi)tentative + h(wi)
if wi ̸∈ VO then

VO = VO ∪ {wi}
end

end
end

end
return Path is not found

Algorithm 3 Hungarian (Kuhn-Munkres) Algorithm

Input: Cost Matrix: C ∈ R|A|×|T |, C ≥ 0
Output: Assignment Matrix: M ∈ R|A|×|T |,M ≥ 0
Compute Cij − ui for each row i, where ui is the row minima
Compute Cij − wj for each column j, where wj is the column minima
Let C ′ be the resulting matrix, where C ′ = Cij − ui − wj

Let n be the minimum number of horizontal and vertical lines needed to cover all zeros in C ′

while M is not found do
if n = |A| then

return M is found
else

Let k be the smallest element in C ′

Subtract k from all uncovered elements: C ′ = C ′
uncovered − k

Add k to all covered elements: C ′ = C ′
covered + k

Update n
end

end

39

Algorithm 4 Frank-Wolfe Algorithm

Input: x(0) ∈ X
Output: x(t) ∈ X
for t = 0...T do

Compute s(t) = argmins∈X ⟨s,∇f(x(t))⟩
Update x(t+1) = (1− γ)x(t) + γs(t) for γ = 2

2+t

end

6.5 Frank-Wolfe for Matching and Routing with Congestion

Our proposed algorithm follows the Frank-Wolfe algorithm framework where we linearize the objective

function of our proposed congestion-aware routing game and assignment problem formulation In order to

facilitate solving the linearized subproblem, we decompose it into two subproblems (19) and (20), where

subproblem (19) is for solving routing game with congestion and subproblem (20) is for solving balanced

assignment problems. This decomposition allows us to use Dijkstra or A∗ to solve the optimal routing

portion of the problem (19) and the Hungarian algorithm to solve the optimal matching portion (20). This

leads to our proposed algorithm shown in Algorithm 5.

6.5.1 Linearized Routing with Congestion and Matching

To apply Frank-Wolfe to our proposed problem, we linearize (14) to get the following optimization problem.

ξ
(k)
ij ,M

(k)
ij = arg min

x′
ij ,M

′

∑
ij

∑
e

ℓe(x
(k)
e)x′

(k)
ije (18a)

s.t. Eijx
′(k)
ij = SijM

′(k)
ij , x′

(k)
ij ≥ 0, ∀i, j (18b)

M ′(k)1 = 1, M ′(k)⊤1 = 1, M ′(k) ≥ 0 (18c)

Many methods could be used to solve this linear program; however, with a small amount of analysis, we

can show how this joint LP can be solved using a combination of Dijkstra’s algorithm and the Hungarian

algorithm. Note that the cost (18) does not depend explicitly on M ′, just x′. Given the nature of the

constraints in (18b), scaling Mij
′(k) only changes the magnitude of the optimal xij

′(k), not its direction. As

40

a result, we can solve for the optimal xij
′(k) separate from Mij

′(k). For each i, j, let ηij(k) solve

η
(k)
ij = argmin

η′ij

∑
e

ℓe(x
(k)
e)η′ije (19a)

s.t. Eijη
′
ij = Sij , η

′
ij ≥ 0, (19b)

for each i, j pair. Note that if η(k)ij satisfies (19b), then setting ξ
(k)
ij = η

(k)
ij M

(k)
ij will satisfy (18b). We can

then write (18) as

min
M ′

∑
ij

CijM
′(k)
ij (20a)

s.t. M ′(k)1 = 1, M ′(k)⊤1 = 1, M ′(k) ≥ 0 (20b)

with Cij =
∑

e ℓe(x
(k)
e)η(k)ije, where each η(k)ij solves (19). The solutions to (18) are then given by

solving (19) for each η
(k)
ij , then solving (20) for each M

(k)
ij , and finally by computing ξ

(k)
ij = η

(k)
ij M

(k)
ij .

Since (19) is a shortest path problem, it can be solved efficiently using Dijkstra or A∗, and since (20) is a

matching problem, it can be solved efficiently using the Hungarian algorithm. We formalize this algorithm

in the following section.

Algorithm 5 Frank-Wolfe for Matching and Routing with Congestion

Input: x(0) ∈ X
Output: x(k) ∈ X
for k = 0...T do

Compute edge costs: ec = Ax(k) + b for edge e

Find the shortest path, Pij , and length, Cij , between agent i and task j with Dijkstra’s or A∗ algorithm

Let η(k)ij denote the optimal path indicator vector

Construct the assignment cost matrix C

Solve for the optimal assignment matrix M(k) with the Hungarian algorithm

Compute edge flow update vectors ξ(k)ij = η
(k)
ij M

(k)
ij

Compute the total edge flow update vector ξ(k) =
∑

ij ξ
(k)
ij

Update x(k+1) = (1− γ)x(k) + γξ(k) for γ = 1
1+k

end

41

At each iteration k, Algorithm 5 first computes the current edge costs with congestion based on a defined

latency function and then calculates the shortest path length with the updated edge costs between agent i and

task j by using either Dijkstra’s or A∗ algorithm to populate the cost matrix, C, for the assignment problem.

After that, it solves for the optimal matching between agent i and task j with the Hungarian algorithm and

finds each agent’s associated edge flow vector, ξ(k)ij , with M
(k)
ij amount of mass added to edges in the

shortest paths. Finally, the algorithm performs the Frank-Wolfe update to obtain the approximated overall

edge flow vector, x(k), and repeats the whole process until x converges.

Comment on non-compactness of (19): In the routing game literature, Frank-Wolfe is often used to solve

for Wardrop equilibria, and Dijkstra/A∗ are used to solve the linearized shortest path problem as in Problem

(19). Technically, Problem (19) may not be compact since we can add any element in the nullspace of Eij

(i.e., any cyclic flow) to any feasible η′
(k)
ij and remain feasible. For positive latencies, however, this is not a

problem since we know that any cyclic flow will increase the value of the objective, and thus the optimal set

for (19) contains no cyclic flows. Since we know that the optimizer will lie in a compact set (η′(k)ij with no

cyclic flows), we can still apply Frank-Wolfe. For further details, we refer the reader to discussions in [34].

42

7 Simulation Results

This section presents simulation results of our proposed Frank-Wolfe-based algorithm for solving congestion-

aware routing and matching problems in the context of the street network of Seattle City and the multi-robot

warehouse problem. We solve for balanced and unbalanced assignments while varying the number of agents

and tasks and latency function with convergence plotted.

7.1 Street Network Problem

We built our simulation in Python using NetworkX [37], a package for implementing complex networks.

Then, we simulated 10 agents and 10 tasks with a latency function of

ℓ(x) = Ax+ b (21)

where A ∈ R|E|×|E| is a diagonal matrix, b ∈ R|E| is a constant vector, and x ∈ R|E| is the overall edge flow

vector. The traffic congestion is encoded in the diagonal elements of A while the constant edge costs are

indicated in b. Based on Algorithm 5 at each iteration, we compute the edge costs according to the latency

function (21) and find the shortest path between agent i and task j with Dijkstra’s algorithm [7] to construct

the assignment cost matrix, C ∈ R|A|×|T |. We used Dijkstra’s algorithm because of the more efficient

implementation than A∗ algorithm from NetworkX. Next, the optimal assignment matrix, M ∈ R|A|×|T |,

is found with the Hungarian algorithm through the linear sum assignment function from SciPy [38]. after

summing up each agent’s edge flow vector, the Frank-Wolfe update is performed with a step size of 1
k+1 .

Figure 3 shows the optimal matching and routing result for 10 agents and 10 tasks simulated with A

being an identity matrix and b being a vector of ones. The locations of the agents in red and the locations of

the tasks in white are randomly picked. Particularly, Figure 3a plots each agent’s edge flow by highlighting

each optimal assignment and the corresponding shortest paths in different colors, with the widths of the

edges reflecting the amount of flow going through each edge. In addition, Figure 3a demonstrates that

there may be multiple shortest paths for each agent to travel to its assigned destination, with each path

having a different amount of traffic flow distributed at equilibrium to avoid congestion in traffic and achieve

the minimum total travel cost. In Figure 3b, we can see the optimal overall edge flow for the network at

equilibrium, where the width of each edge includes all the agent’s edge flow.

43

(a) Individual Edge Flow (b) Overall Edge Flow

Figure 3: Optimal Matching and Routing Result with Balanced Assignments

Figure 4 shows the matching and routing result simulated by choosing assignments between the agents

and the tasks randomly instead of using the Hungarian algorithm. On top of that, we provide Figure 5

to compare the convergence rate and minimum costs achieved by our algorithm and random assignment.

In Figure 5, our algorithm converges at iteration 27, while the random assignment algorithm converges at

iteration 29. Therefore, our algorithm not only converges at a faster rate but also reaches a lower minimum

cost than the random assignment algorithm. Apart from that, we can see Figure 4a reflects that random

assignment allows agents to explore non-optimal matching and routing, and Figure 4b further demonstrates

the overall edge flow is more spread out in the network, which results in a slower convergence rate and

higher total travel cost. As a result, we demonstrate that our algorithm achieves a minimum total travel cost

and gives the optimal matching and routing for the given set of agents and tasks effectively and efficiently.

44

(a) Individual Edge Flow (b) Overall Edge Flow

Figure 4: Random Assignment Matching and Routing Result

(a) Convergence of x (b) Minimum Assignment Costs

Figure 5: Comparison between Hungarian Algorithm and Random Assignments

We vary the values of A and b to study the contribution of the congestion and constant edge costs terms

to the optimal solution, as shown in Figures 6 and 7. Figure 6b shows that when b is large compared to A, the

45

congestion does not affect the optimal solution much because the shortest path computations are dominated

by the values of b. With little congestion in the network, we can observe that each agent is assigned to the

optimal task quickly, and most mass clumps up on the assigned shortest paths without much exploration

in Figure 6a. Consequently, the optimal solution obtained at equilibrium with b dominating is close to the

shortest paths the agents would get if they only consider the edge costs given by b.

Figure 7b demonstrates that when A is larger than b, most of the latency on each edge comes from

the congestion term and the mass of x shifts away from the shortest paths. With heavy congestion in the

network, it is shown in Figure 7a that the mass of each agent is distributed across multiple paths, and the

optimal assignment between agent i and task j varies more than the results in Figure 6a. As a result, the

mass no longer clumps up on a single shortest path to avoid increasing the cost of that path significantly, so

the equilibrium optimal solution tends to spread out over multiple paths with various matching assignments.

(a) Individual Edge Flow (b) Overall Edge Flow

Figure 6: Optimal Matching and Routing Result with Little Congestion

46

(a) Individual Edge Flow (b) Overall Edge Flow

Figure 7: Optimal Matching and Routing Result with Heavy Congestion

Finally, we simulated unbalanced assignment with 10 agents and 30 tasks by modifying the constraint

(14d) to M1 = 1 · n
m and M⊤1 = 1, where m is number of agents and rows in M and n is number

of tasks and columns in M . The constraints for the M matrix are the columns sum to 1, meaning that

a task is completed by all agents, and the rows sum to the ratio of the number of tasks divided by the

number of agents, meaning that the agents equally split the tasks. On top of that, we replace the Hungarian

algorithm with a linear program to solve for optimal assignment with the modified constraint using the

CVXPY package [39, 40]. Figure 8a highlights the shortest paths each agent traveled to each optimally

assigned task in the same color. Each path has a different amount of traffic flow distributed at equilibrium to

avoid congestion in traffic and achieve the minimum total travel cost. As for Figure 8b, we see the overall

optimal edge flow at equilibrium in the network after combining each agent’s edge flow. In addition to Figure

8, we provide Figures 9a and 9b to illustrate that our algorithm successfully finds the optimal matching and

47

routing for unbalanced assignments as well with x and the minimum cost converging at iteration 26.

(a) Individual Edge Flow (b) Overall Edge Flow

Figure 8: Optimal Matching and Routing Result with Unbalanced Assignments

(a) Convergence of x (b) Minimum Assignment Costs

Figure 9: Unbalanced Assignment Convergence of x and Minimum Assignment Costs

48

7.2 Multi-Robot Warehouse Problem

Similarly, we simulate the multi-robot warehouse problem in Python using NetworkX [37] by considering

10 agents and 10 tasks randomly placed in a two-dimensional 50 × 50 grid graph with a latency function

in Equation 21. The difference in this problem is to keep track of the number of turns robots make and

incorporate the information with the matching and routing problems. The goal of avoiding turns is to not

only allow robots to move more efficiently, as changing their direction requires extra time but also avoid

collisions, where two robots enter the same node. In our implementation, we expand all the nodes in the grid

graph in five directions and expand the edges to connect nodes based on the additional direction information.

Next, a turn penalty cost is included in the latency function to prevent agents from making many turns when

navigating to the delivery locations.

In Figure 10, the robots are highlighted in red, and the delivery locations are highlighted in white around

the boundary of the warehouse floor. Also, Figure 10 shows the optimal assignment between the agents and

tasks with the corresponding shortest paths indicated by the overall edge flow value tied to each node. After

comparing Figures 10a and 10b, we confirm that including the turn penalty term in the latency function

allows the robots to travel to assigned delivery locations through shortest paths with fewer number of turns.

(a) Overall Edge Flow without Turn Penalty (b) Overall Edge Flow with Turn Penalty

Figure 10: Optimal Matching and Routing Result with Balanced Assignments

49

Moreover, Figures 11a and 11b show that the convergence of x and the achieved minimum assignment

costs with and without penalty turns. This demonstrates that our proposed algorithm with turn penalty

effectively solves the optimal matching and routing with congestion avoidance for the given agents and tasks

while ensuring the robots navigate to the delivery locations in consistent directions as much as possible.

(a) Convergence of x (b) Minimum Assignment Costs

Figure 11: Comparison of Turn Penalty in Convergence of x and Minimum Assignment Costs

Same case studies are conducted where we vary the values of A and b to understand the effect of conges-

tion and constant edge costs terms and replace the Hungarian algorithm with random assignments to provide

a benchmark illustrating the effectiveness of our algorithm. Figure 13 plots the matching and routing result

with random assignments and shows the robots explore non-optimal routes to assigned delivery locations,

leading to the slower convergence rate of x and the higher minimum assignment costs compared to the

results from our algorithm, as shown in Figure 12.

(a) Convergence of x (b) Minimum Assignment Costs

Figure 12: Comparison between Hungarian Algorithm and Random Assignments

50

Figure 13: Overall Edge Flow with Random Assignments

Here, we observe the same behaviors, where each agent is assigned to the optimal task quickly, and

most mass clumps up on a sign shortest path when little congestion is present in the network, as illustrated

in Figure 14b. On the other hand, each agent gets assigned to a different task more often, and the mass no

longer clumps up on a single shortest path to avoid increasing the cost of that path significantly when there

is heavy congestion present, as shown in Figure 14b.

(a) Overall Edge Flow with Little Congestion (b) Overall Edge Flow with Heavy Congestion

Figure 14: Optimal Matching and Routing Result with Balanced Assignments

51

Finally, Figure 15 illustrates unbalanced assignments simulated with 10 agents and 30 tasks and turn

penalty included. Additionally, each robot travels through the shortest paths to the optimally assigned tasks

with a minimal number of turns. Each path has a different amount of flow distributed at equilibrium to

avoid congestion and achieve the minimum total travel cost. Also, Figure 16 verifies that our algorithm

successfully finds the optimal matching and routing for unbalanced assignments, where x and the minimum

assignment costs converge at iteration 6.

Figure 15: Overall Edge Flow for Unbalanced Assignments

(a) Convergence of x (b) Minimum Assignment Costs

Figure 16: Unbalanced Assignment Convergence of x and Minimum Assignment Costs

52

8 Conclusions

In this thesis, we successfully formulated an optimization problem tackling traffic assignment, task assign-

ment, and congestion avoidance simultaneously. By understanding the connection between the routing and

matching components in our problem formulation, we developed a Frank-Wolfe-based algorithm to solve for

the optimal assignment between the given agents and tasks and the associated optimal routes while consid-

ering congestion in the system. Finally, we demonstrated simulation results in the street network of Seattle

City and the multi-robot warehouse system to effectively and efficiently deal with congestion, turn penal-

ties, and unbalanced assignments on top of finding the optimal assignment and associated optimal routes.

Some directions for future work would be studying the time complexity of our algorithm and reducing the

computation cost. Next, our problem formulation and algorithm provide an average solution for the system

at equilibrium, so we would like to extend our current framework to consider dynamic collision avoidance

for multi-robot systems, which aims to avoid collisions at each time iteration. Last but not least, the current

framework built acts as a centralized planner for the whole system, while there has been work focusing on

fully distributed path planning and task assignment algorithms applied in the multi-robot systems. There-

fore, we would like to explore combining our current algorithm with distributed algorithms implemented on

each agent to increase the performance and reduce processing time for finding the optimal solutions.

53

References

[1] A. C. Andersen, K. Pavlikov, and T. A. Toffolo, “Weapon-target assignment problem: Exact and ap-

proximate solution algorithms,” Annals of Operations Research, vol. 312, no. 2, pp. 581–606, 2022.

[2] C. Nam and D. A. Shell, “Assignment algorithms for modeling resource contention in multirobot task

allocation,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 889–900,

2015.

[3] B. Eksioglu, A. V. Vural, and A. Reisman, “The vehicle routing problem: A taxonomic review,” Com-

puters & Industrial Engineering, vol. 57, no. 4, pp. 1472–1483, 2009.

[4] M. W. Levin, “Congestion-aware system optimal route choice for shared autonomous vehicles,” Trans-

portation Research Part C: Emerging Technologies, vol. 82, pp. 229–247, 2017.

[5] F. Wu, V. S. Varadharajan, and G. Beltrame, “Collision-aware task assignment for multi-robot sys-

tems,” in 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE,

2019, pp. 30–36.

[6] M. Frank, P. Wolfe et al., “An algorithm for quadratic programming,” Naval research logistics quar-

terly, vol. 3, no. 1-2, pp. 95–110, 1956.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in Edsger Wybe Dijkstra: His

Life, Work, and Legacy, 2022, pp. 287–290.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum

cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[9] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics quarterly,

vol. 2, no. 1-2, pp. 83–97, 1955.

[10] J. G. WARDROP, “Road paper. some theoretical aspects of road traffic research.” Proceedings

of the Institution of Civil Engineers, vol. 1, no. 3, pp. 325–362, 1952. [Online]. Available:

https://doi.org/10.1680/ipeds.1952.11259

54

https://doi.org/10.1680/ipeds.1952.11259

[11] X. Di, R. Ma, H. X. Liu, and X. J. Ban, “A link-node reformulation of ridesharing user equilibrium

with network design,” Transportation Research Part B: Methodological, vol. 112, pp. 230–255, 2018.

[12] J. G. Wardrop, “Road paper. some theoretical aspects of road traffic research.” Proceedings of the

institution of civil engineers, vol. 1, no. 3, pp. 325–362, 1952.

[13] M. Beckmann, C. B. McGuire, and C. B. Winsten, “Studies in the economics of transportation,” Tech.

Rep., 1956.

[14] X. J. Ban, M. Dessouky, J.-S. Pang, and R. Fan, “A general equilibrium model for transportation sys-

tems with e-hailing services and flow congestion,” Transportation Research Part B: Methodological,

vol. 129, pp. 273–304, 2019.

[15] Z. Liu, H. Wei, H. Wang, H. Li, and H. Wang, “Integrated task allocation and path coordination for

large-scale robot networks with uncertainties,” IEEE Transactions on Automation Science and Engi-

neering, vol. 19, no. 4, pp. 2750–2761, 2021.

[16] A. Prorok, “Redundant robot assignment on graphs with uncertain edge costs,” in Distributed Au-

tonomous Robotic Systems: The 14th International Symposium. Springer, 2019, pp. 313–327.

[17] P. M. Shiroma and M. F. Campos, “Comutar: A framework for multi-robot coordination and task

allocation,” in 2009 IEEE/RSJ international conference on intelligent robots and systems. IEEE,

2009, pp. 4817–4824.

[18] Z. Liu, H. Wang, H. Wei, M. Liu, and Y.-H. Liu, “Prediction, planning, and coordination of thousand-

warehousing-robot networks with motion and communication uncertainties,” IEEE Transactions on

Automation Science and Engineering, vol. 18, no. 4, pp. 1705–1717, 2020.

[19] Y. Fan, F. Deng, and X. Shi, “Multi-robot task allocation and path planning system design,” in 2020

39th Chinese Control Conference (CCC). IEEE, 2020, pp. 4759–4764.

[20] R. Jonker and T. Volgenant, “A shortest augmenting path algorithm for dense and sparse linear as-

signment problems,” in DGOR/NSOR: Papers of the 16th Annual Meeting of DGOR in Cooperation

with NSOR/Vorträge der 16. Jahrestagung der DGOR zusammen mit der NSOR. Springer, 1988, pp.

622–622.

55

[21] M. Jaggi, “Revisiting frank-wolfe: Projection-free sparse convex optimization,” in International con-

ference on machine learning. PMLR, 2013, pp. 427–435.

[22] G. Laporte, “The veshicle routing problem: An overview of exact and approximate algorithms,” Euro-

pean journal of operational research, vol. 59, no. 3, pp. 345–358, 1992.

[23] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths algorithms: Theory and experimental

evaluation,” Mathematical programming, vol. 73, no. 2, pp. 129–174, 1996.

[24] D. Monderer and L. S. Shapley, “Potential games,” Games and Economic Behavior, vol. 14,

no. 1, pp. 124–143, 1996. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0899825696900445

[25] M. Englert, T. Franke, and L. Olbrich, “Sensitivity of wardrop equilibria,” Theory of Computing Sys-

tems, vol. 47, pp. 3–14, 2010.

[26] A. O’sullivan, S. M. Sheffrin, and K. Swan, “Economics: Principles in action,” 2003.

[27] G. Sharon, S. D. Boyles, S. Alkoby, and P. Stone, “Marginal cost pricing with a fixed error factor in

traffic networks.” in AAMAS, 2019, pp. 1539–1546.

[28] L. Olbrich, “Aspects of wardrop equilibria,” 2009. [Online]. Available: https://api.semanticscholar.

org/CorpusID:19365931

[29] A. Pigou, The economics of welfare. Routledge, 2017.

[30] R. Burkard and E. Çela, Linear assignment problems and extensions, 1st ed., ser. Supplement Volume

A. Netherlands: Kluwer Academic Publishers, 1999, pp. 75–149.

[31] S. Martello and P. Toth, “Linear assignment problems,” in North-Holland Mathematics Studies. El-

sevier, 1987, vol. 132, pp. 259–282.

[32] R. T. Rockafellar, Convex analysis. Princeton university press, 1997, vol. 11.

[33] G. Birkhoff, “Three observations on linear algebra,” Univ. Nac. Tacuman, Rev. Ser. A, vol. 5, pp. 147–

151, 1946.

56

https://www.sciencedirect.com/science/article/pii/S0899825696900445
https://www.sciencedirect.com/science/article/pii/S0899825696900445
https://api.semanticscholar.org/CorpusID:19365931
https://api.semanticscholar.org/CorpusID:19365931

[34] M. Patriksson, The traffic assignment problem: models and methods. Courier Dover Publications,

2015.

[35] G. Carpaneto and P. Toth, “Primal-dual algrorithms for the assignment problem,” Discrete Applied

Mathematics, vol. 18, no. 2, pp. 137–153, 1987.

[36] J. Goldberger and T. Tassa, “A hierarchical clustering algorithm based on the hungarian method,”

Pattern Recognition Letters, vol. 29, no. 11, pp. 1632–1638, 2008.

[37] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and function

using networkx,” in Proceedings of the 7th Python in Science Conference, G. Varoquaux, T. Vaught,

and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[38] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-

terson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,

A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vander-

Plas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,

A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental

Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[39] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,”

Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.

[40] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting system for convex optimization

problems,” Journal of Control and Decision, vol. 5, no. 1, pp. 42–60, 2018.

57

	Introduction
	Related Work
	Traffic Assignment Problems with Congestion
	Traffic Assignment and Linear Assignment Problems

	Problem Setup
	Traffic Assignment Problems with Congestion
	Linear Assignment Problems
	Proposed Problem
	Street Network Problem
	Multi-Robot Warehouse Problem

	Background Problem Formulations
	Routing Formulations
	Routing Linear Program Formulation
	Linear Routing: Dual Derivation
	Linear Routing: KKT Conditions
	Linear Routing: Dual Interpretation
	Routing Game Convex Formulation
	Congestion Routing: Primal Formulation
	Congestion Routing: Dual Derivation
	Congestion Routing: KKT Conditions
	Congestion Routing: Further Dual Interpretation

	Matching Linear Program Formulation
	Matching: Primal Formulation
	Matching: Dual Derivation
	Matching: KKT Conditions
	Matching: Further Dual Interpretation

	Matching and Routing with Congestion
	Matching and Routing: Primal Formulation
	Matching and Routing: Dual Derivation
	Matching and Routing: KKT Conditions

	Matching and Routing: Further Dual Interpretation

	Algorithms
	Dijkstra's Algorithm
	A* Algorithm
	Hungarian (Kuhn-Munkres) Algorithm
	Frank-Wolfe Algorithm
	Frank-Wolfe for Matching and Routing with Congestion
	Linearized Routing with Congestion and Matching

	Simulation Results
	Street Network Problem
	Multi-Robot Warehouse Problem

	Conclusions

