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Abstract

Leveraging tools from the study of linear fractional transformations and algebraic Riccati
equations, a local characterization of consistent conjectural variations equilibrium is given for
two player games on continuous action spaces with costs approximated by quadratic functions.
A discrete time dynamical system in the space of conjectures is derived, a solution method for
computing fixed points of these dynamics (equilibria) is given, local stability properties of the
dynamics around the equilibria are characterized, and conditions are given that guarantee a
unique stable equilibrium.

1 Introduction

In many multi-agent systems, the agents are learning about their opponents and the environment
through interaction. Moreover, the agents often have bounded rationality—e.g., humans are known
to not behave rationality (Simon, 1955), and machines inherently have bounded computational
capabilities and are limited to making decisions based on their prescribed algorithmic process.
Much of the literature on using game theory to model multi-agent systems has focused on static
equilibrium notions that assume agents are rational such as Nash or correlated equilibrium. These
equilibrium concepts do not capture the dynamic nature of learning systems or that in many cases
agents form models of their opponent and react or optimize with respect to them.

To address these issues, several different fields have examined the use of opponent models. The
following examples are demonstrative. In machine learning, opponent modeling (Foerster et al.,
2018; Willi et al., 2022) can empirically improve the performance of reinforcement learning agents
in some environments, while symplectic methods can speed up convergence of gradient play in
continuous games with certain structure (Balduzzi et al., 2018; Ha and Kim, 2022). In game
theory, opponent models known as conjectural variations (Figuières, 2004) have been used to analyze
strategic behaviors of firms in oligopoly and electricity markets (Díaz et al., 2010; Friedman and
Mezzetti, 2002; Liu et al., 2006; Perry, 1982). At the intersection of these areas, in prior work, we
investigate the connection between gradient play and opponent anticipation leveraging conjectural
variations (Chasnov et al., 2020), and showed the relationship to implicit learning algorithms in
Stackelberg games (Fiez et al., 2020). Despite existing work there still remains several technical
challenges in terms of characterizing the dynamic interaction of learning agents who form opponent
models.

Motivated by coupled non-cooperative learning systems wherein decision-makers have an op-
ponent model and optimize with respect to this model, we provide a novel characterization of a
(consistent) conjectural variations equilibrium ((C)CVE) (Bowley, 1924; Frisch, 1933). A CVE is
a non-cooperative equilibrium concept—predating even Nash—in which each agent chooses their
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most favorable action taking into account that opponent strategies are a conjectured mapping of
their own strategy. To gain intuition, a CVE can be thought of as a double sided Stackelberg equi-
librium. Indeed in a Stackelberg game, the leader best responds to a myopic follower—i.e. it solves
minx{f(x, y)| y ∈ argminy′ g(x, y

′)}. When both players act like a leader we have a double-sided
Stackelberg game. This is a special case of a CVE wherein the conjecture is simply the myopic
best response model of the follower. Conjectures can be more general mappings, however. Such
an equilibrium is consistent if each player’s strategy in equilibrium is consistent with that which is
conjectured by its opponent. Unlike a Nash equilibrium, a (C)CVE handles strategic uncertainty
through the use of conjectures, and has the following interpretation in terms of incentives: at a CVE
no player has an incentive to deviate according to their own beliefs. Our interest in this equilibrium
concept is precisely due to its aptitude for capturing dynamic contexts, or situations of bounded
(procedural) rationality, or both. In particular, as we will highlight in the sequel, a (C)CVE can be
seen as arising from repeated best response given an opponent model.

Contributions. We leverage tools from the study of linear fractional transformations, and
algebraic Riccati equations to provide a novel characterization of consistent conjectural variations
equilibria for two-player d1×d2 continuous games with quadratic costs; a quadratic game can also be
thought of as an local approximation of more general costs. Focusing on conjectures that are affine
in player actions, we derive a set of coupled Riccati equations and show that CCVE exist if these
equations have solutions. Additionally, we show that these coupled Riccati equations naturally
lead to a discrete time dynamical system when they are iterated, ie. when players update their
conjectures to be the best response to their opponent’s conjecture in the affine conjecture space.
We give a general solution method for computing fixed points of these dynamics (CCVE of the
game) via solving an eigenvalue problem; we analyze the local stability properties of the dynamics
around the CCVE; and we give conditions that guarantee a unique, stable CCVE. Finally, we discuss
second order conditions and conclude with illustrative numerical examples and discussion.

2 Preliminaries

Consider the two-player game G = (f1, f2) such that fi ∈ C2(Rd1 ×Rd2 ,R) for each i ∈ {1, 2}. The
function fi : Rd1 × Rd2 → R is player i’s cost, which they seek to minimize by choosing xi ∈ Rdi .
Let x = (x1, x2) ∈ Rd where d = d1 + d2 denotes the dimension of the joint action space. Let the
set of conjectures be the set of mappings defined by

C1 × C2 = {(c1, c2)| c1 : Rd2 → Rd1 , c2 : Rd1 → Rd2}.

Definition 1. A point xc = (xc1, x
c
2) and a pair of conjectures (cc1, c

c
2) ∈ C1 × C2 is a consistent

conjectural variations equilibrium (CCVE) if xci = cci (x
c
−i) for each i = 1, 2, and

xci = argmin
xi

{fi(xi, x−i)| x−i = cc−i(xi)}, ∀ i = 1, 2.

Given an a priori fixed set of conjectures (cc1, c
c
2) ∈ C1 × C2 in a CCVE, the point (xc1, x

c
2) is a

generalized Nash equilibrium of the constrained game {minxi fi(xi, c
c
−i(xi))| xi = cci (c

c
−i(xi))}2i=1.

However, finding a CCVE requires finding the maps (cc1, cc2), so the problem of characterizing CCVE
does not immediately reduce to a generalized Nash equilibrium problem.

As shown in (Başar and Olsder, 1998), when the costs are (jointly) strictly convex, an equivalent
characterization of a CCVE in terms of the conjectures is the following: the two conjectures (cc1, cc2) ∈
C1 × C2 are a CCVE if and only if, for each i = 1, 2, we have

Dxifi(x) +Dx−ifi(x)Dxic
c
−i(xi) ≡ 0, xi = cci (x−i), (1)
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where Dx is the partial derivative operator with respect to a vector x. In the absence of joint strict
convexity, these are first order conditions; we call solutions to (1) first-order CCVE. A second-order
CCVE is a solution to (1) with the additional condition that minxi{fi(xi, cc−i(xi))} is strongly
convex.

The focus of this paper is on characterizing CCVE and corresponding conjectures up to first- and
second-order using a quadratic approximation of the game around the equilibrium. When the game
is quadratic, a second-order CCVE is precisely a CCVE. Even in quadratic games, the existence of
CCVE is not guaranteed, and as we show, for affine conjectures the question of existence boils down
to finding solutions to coupled asymmetric Riccati equations. This is analogous to the existence
of Nash equilibrium in dynamic linear quadratic games (cf. (Aboukandil et al., 2003), (Başar and
Olsder, 1998, Ch. 6)).

2.1 Quadratic Game Approximation

The local quadratic approximation of cost fi is given by

fi(xi, x−i) =
1

2

[
xi
x−i

]⊤ [
Ai B⊤

i

Bi Di

] [
xi
x−i

]
+

[
ai
bi

]⊤ [
xi
x−i

]
,

where Ai ∈ Rdi×di , Di ∈ Rd−i×d−i , Bi ∈ Rd−i×di , ai ∈ Rdi and bi ∈ Rd−i . Further, we assume that
Ai ≻ 0 for each i = 1, 2. The Di matrices penalize player i based solely on x−i and may often be
negative or zero. As noted quadratic games are a useful approximation of the behavior of more
complex games around an equilibrium. Moreover, quadratic games of the form considered capture
finite time linear quadratic games with open-loop strategies, since the dynamics can effectively be
“unrolled" and the strategy xi is simply the stacked vector of control inputs.

We consider only the space of affine conjectures; analogous to affine optimal policies in linear
quadratic optimization problems, affine conjectures are the most natural class of conjectures for
quadratic games as will be illustrated through our analysis. In fact, it is straightforward to show
that if a player has an affine conjecture for its opponent, then the best response for that player
is itself an affine policy. With this in mind, let player i have an affine conjecture given by x−i =
c−i(xi) = Lixi + ℓi. This results in player i facing the following optimization problem:

min
xi

{fi(xi, x−i)| x−i = c−i(xi) = Lixi + ℓi}.

The conditions for a first-order CCVE (x1, x2) in affine conjectures are

0 = Dx1f1(x1, c2(x1)), 0 = Dx2f2(c1(x2), x2),

c2(x1) = L1x1 + ℓ1, c1(x2) = L2x2 + ℓ2.
(2)

Given (2), the implications for existence can be summarized in the following proposition.

Proposition 1. For a quadratic game (f1, f2), given affine conjectures of the form c−i(xi) = Lixi+
ℓi for i = 1, 2, a first-order CCVE exists if there are solutions to coupled Riccati equations:

L⊤
−i(Ai +B⊤

i Li) + (Bi +DiLi) = 0, ∀ i ∈ {1, 2}. (3)

In addition, if a solution to (3) satisfies

Ai + L⊤
i Bi +B⊤

i Li + L⊤
i DiLi ≻ 0 ∀ i ∈ {1, 2}, (4)

then that solution is a CCVE.
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Indeed, applying the chain rule, player i’s first order optimality conditions are

0 = x⊤i (Ai +B⊤
i Li) + x⊤−i(Bi +DiLi) + a⊤i + b⊤i Li.

If xi is consistent with player −i’s conjecture, then xi = L−ix−i + ℓ−i. Plugging this in for xi gives

0 = x⊤−i(L
⊤
−i(Ai +B⊤

i Li) +Bi +DiLi)

+ ℓ⊤−i(Ai +B⊤
i Li) + a⊤i + b⊤i Li.

For this to be true for any x−i, we need the conditions in (3) to hold. Equivalently, (and perhaps
more intuitively) supposing the inverse of (Ai + B⊤

i Li) exists, we can rewrite player i’s first order
condition as x⊤i = −x⊤−i(Bi +DiLi)(Ai +B⊤

i Li)
−1 − (a⊤i + b⊤i Li)(Ai +B⊤

i Li)
−1 and the consistent

conjecture conditions are given directly by

L⊤
−i = −(Bi +DiLi)(Ai +B⊤

i Li)
−1,

ℓ⊤−i = −(a⊤i + b⊤i Li)(Ai +B⊤
i Li)

−1 ∀ i ∈ {1, 2}.
(5)

This shows that if a player has an affine conjecture for its opponent’s play, then its best response
can be written as an affine policy. Note that the Riccati equations (3) are sufficient for first order
conditions since ℓi can be computed separately based on Li for i = 1, 2.

For quadratic games, a second-order CCVE is equivalent to a CCVE. The following conditions
characterize when a second-order CCVE exits. Expanding out player i’s cost given the affine
conjecture, we get

fi(xi, c−i(xi)) =
1
2x

⊤
i (Ai + L⊤

i Bi +B⊤
i Li + L⊤

i DiLi)xi

+ (a⊤i + ℓ⊤i Bi + b⊤i Li)xi + ℓ⊤i Diℓi + b⊤i ℓi.

Hence, player i’s optimization problem is strongly convex if (4) hold.
We use (Lc

i , ℓ
c
i ) to refer consistent conjectures—i.e., the solutions to the coupled Riccati equations

(3) and the corresponding affine offsets. Solutions may still exist when the inverses in (5) do not,
however, as has been shown in special cases in the literature on CCVE such as for scalar Bertrand
games, this leads to a multiplicity of solutions and an equilibrium selection problem (see (Figuières,
2004; Olsder, 1981) and references therein). Given page constraints, we leave the analysis of these
more nuanced cases to a future paper.

For each i = 1, 2, define the following linear fractional transformation (LFT) update:

L+
−i = LFTi,−i(Li) = −(A⊤

i + L⊤
i Bi)

−1(B⊤
i + L⊤

i D
⊤
i ),

where the subscript (·)12 can be read as “from 1 to 2". The update for Li naturally defines discrete-
time dynamics in the conjecture parameter space that show how a player should update their
conjecture to be consistent with their opponent’s current conjecture. It is also useful to think of
dynamic updates for each player separately constructed by composing the updates as follows:

L+
i = LFT−i,i(LFTi,−i(Li)) (6)

= −
(
A⊤

−i − (Bi +DiLi)(Ai +B⊤
i Li)

−1B−i

)−1

· (B⊤
−i − (Bi +DiLi)(Ai +B⊤

i Li)
−1D⊤

−i), i = 1, 2.
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Remark 1. The first order conditions in (3) guarantee that the players have consistent conjectures.
The second order conditions (4) guarantee that given their conjecture, player i’s cost is convex in
xi. Expounding the first order conditions—characterizing the LFT dynamics, finding fixed points by
solving (3), and characterizing their stability—is non-trivial and is the primary focus of this paper.
Our results will show that there is a limited number of stable first-order CCVE. Once these stable
equilibria are found, the second order conditions (4) can easily be checked. For further discussion,
see Section 6.

2.2 LFT Matrix Representation

We will see in the subsequent section that LFTs can be efficiently represented by matrices and their
composition by matrix manipulation. Towards this end, let us define some useful objects that will
be used throughout. Define the d× d real valued matrices (where d = d1 + d2)

M1 =

[
A1 B⊤

1

B1 D1

]
, and M2 =

[
D2 B2

B⊤
2 A2

]
. (7)

We make the following assumption on M1 and M2.

Assumption 1. The matrices M1,M2 are invertible.

We will be directly interested in the two products M1 = M−⊤
2 M1 and M2 = M−⊤

1 M2. Note
that M1,M2 invertible ⇐⇒ M1,M2 invertible Let spec

(
M1

)
and spec

(
M2

)
refer to the spectra of

each matrix. A simple argument shows that spec(M1) = 1/spec(M2) where we use 1/(·) to mean
element-wise inversion.

2.3 Examples

In this section, we present two examples of consistent conjectural variations equilibria in quadratic
games.

2.3.1 Linear quadratic dynamic game

Consider a two player linear quadratic dynamic game with open loop policies ui = (ui,0, . . . , ui,T−1)
for i = 1, 2:

fi(u1,u2) =

T−1∑

t=0

1

2
z⊤t Qizt +

1

2
u⊤i,tRiui,t + u⊤i,tRi,−iu−i,t +

1

2
z⊤T Qi,fzT

zt+1 = Fzt +G1u1,t +G2u2,t, zt ∈ Rn.

Unfolding the dynamics we have that for Z = [z⊤0 , . . . , z
⊤
T ]

⊤, we have Z = W1u1 + W2u2 + F̄ z0
where

Wi =




0 · · · 0
Gi 0 · · · 0
FGi Gi 0 · · · 0

...
...

. . . . . .
...

F T−2Gi F T−3Gi · · · Gi 0
F T−1Gi F T−2Gi · · · FGi Gi



, i = 1, 2,
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and
F̄ =

[
I F⊤ · · · (F T )⊤

]⊤
.

Define the following cost matrices:

Qi := diag(Qi, . . . , Qi, Qi,f ) ∈ Rn(T+1)×n(T+1),

Ri := diag(Ri, . . . , Ri) ∈ RdiT×diT ,

Ri,−i := diag(Ri,−i, . . . , Ri,−i) ∈ RdiT×d−iT .

Hence player i’s cost is given by

fi(ui,u−i) =
1

2
u⊤
i Riui + u⊤

i Ri,−iu−i +
1

2
(W1u1 +W2u2 + F̄ z0)

⊤Qi(W1u1 +W2u2 + F̄ z0).

Expanding and regrouping this cost, we can recover (Ai, Bi, Di, ai, bi) for each player. Indeed, we
have that

fi(u1,u2) =
1
2u

⊤
i (Ri +W⊤

i QiWi)ui +
1
2z

⊤
0 F̄

⊤QiF̄ z0 + u⊤
i (Ri,−i +W⊤

i QiW−i)u−i

+ z⊤0 F̄
⊤Qi(Wiui +W−iu−i) +

1
2u

⊤
−iW

⊤
−iQiW−iu−i,

=
1

2

[
ui

u−i

]⊤ [
(Ri +W⊤

i QiWi) (Ri,−i +W⊤
i QiW−i)

(Ri,−i +W⊤
i QiW−i)

⊤ W⊤
−iQiW−i

] [
ui

u−i

]

+ z⊤0 F̄
⊤Qi(Wiui +W−iu−i) +

1
2z

⊤
0 F̄

⊤QiF̄ z0,

so that

Ai = Ri +W⊤
i QiWi, a⊤i = z⊤0 F̄

⊤QiWi

Bi =
(
Ri,−i +W⊤

i QiW−i

)⊤
b⊤i = z⊤0 F̄

⊤QiW−i

Di = W⊤
−iQiW−i

In a typical LQR problem it is assumed that Ri ≻ 0 in order for solutions to exist (there are
conditions that weaken this assumption), and hence Ai ≻ 0. Since Ai is non-degenerate under the
assumption Ri ≻ 0, a sufficient condition for Mi for i = 1, 2 to each be non-degenerate is that the
Schur complement of Mi with respect to (Ri + W⊤

i QiWi) is non-degenerate; indeed, this follows
from the fact that

[det(Mi) ̸= 0 ∀i ∈ {1, 2}] ⇐⇒ [det(Mi) ̸= 0 ∀i ∈ {1, 2}].

2.3.2 Adaptive human-machine interactions

It has recently been shown that CCVE well-model human-machine co-adaptation (Chasnov et al.,
2023). In this study the human and the machine have scalar quadratic costs, and series of exper-
iments explore convergence of repeated game play to CCVE in an computer-facilitated task. The
costs for the human and the machine are given by

fi(xi, x−i) =
1

2

[
xi
x−i

]⊤ [
qi ri
ri si

] [
xi
x−i

]
+

[
wi

vi

]⊤ [
xi
x−i

]
,

where all the cost parameters are scalars and xi ∈ R for each i = 1, 2. Assumption 1 is satisfied for
this game if det(Mi) ̸= 0 ⇐⇒ qisi − r2i ̸= 0 for each i = 1, 2. This holds for the games studied in
(Chasnov et al., 2023), and further it is shown in the supplement of the same reference that CCVE
exist in affine conjectures for the games studies therein.
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2.4 Warm-Up: Scalar Möbius Transformations

In order to get some intuition for why the matrices Mi have the form they, it is instructive to
consider the scalar setting. It turns out that for scalar games the LFT description of the CCVE
conjecture parameters is equivalent to a Möbius transformation, and examining this case provides
useful intuition for the more general case.

Indeed, the variables L1, L2 and parameters are all now scalar so that the LFT for player one
reduces to

L1 = LFT21(L2) = −(B2 + L2D2)/(A2 + L2B2),

with composition map LFT21 ◦ LFT12(L1) given by

L1 =
(B1D2 −A1B2) + (D1D2 −B1B2)L1

(A1A2 −B1B2) + (A2B1 −D1B2)L1

The expressions for player two are analogous. It is well known that a Möbius transformation can
be represented in the matrix form given in (7) with scalar the entries (Lang, 2013, Ch. VII). The
matrix representation of the composition map is

M1 =

[
A1A2 −B1B2 A2B1 −D1B2

B1D2 −A1B2 D1D2 −B1B2

]

=

[
A2 −B2

−B2 D2

] [
A1 B1

B1 D1

]
= det(M2)M

−1
2 M1

Note that scaling by the determinant is unimportant since the the matrix representation does not
change with scaling.

Fixed points of Möbius transformations can be characterized in terms of the eigenvectors of their
matrix representations. For a scalar LFT with matrix representation M1 there are two fixed points
each characterized by an eigenvector of M1. Specifically, suppose [1 v]⊤ is a right eigenvector of
M1 = [m11 m12;m21 m22]. Then we have

[
m11 m12

m21 m22

] [
1
v

]
=

[
m11 +m12v
m21 +m22v

]
=

[
1
v

]
λ

and it follows that v = (m21 + m22v)/(m11 + m12v), ie. v is a fixed point for the LFT. Further
analysis shows that the stability of each fixed point depends on the ratio of the two eigenvalues with
one stable and one unstable fixed point or two marginally stable fixed points (Lang, 2013).

In order to extend this analysis to matrix LFTs, we use tools from algebraic Riccati equation
analysis. Yet, at its core the idea is very much the same as in the scalar case in that the eigenstructure
of M1 tells us everything about the stability properties of CCVE as we will see in the coming sections.

3 LFT Dynamics: Matrix Form

In this section, we study the composite LFT dynamics; fixed points of these dynamics define the
conjecture parameters (L1, L2) in a CCVE (x1, x2). Recall that given (L1, L2), the affine terms
(ℓ1, ℓ2) follow immediately from (5). Given (Li, ℓi) for i = 1, 2, we can easily recover (x1, x2) by
solving the linear equations {x−i = Lixi + ℓi, i = 1, 2}.

Define the blocks of the product matrices M1 = M−⊤
2 M1 and M2 = M−⊤

1 M2 as follows:

M1 =

[
A1 B1

C1 D1

]
, and M2 =

[
D2 C2

B2 A2

]
.

7



Theorem 1. The composite LFT update in (6) can be written in the compact form

L+
i =

(
Ci +DiLi

)(
Ai +BiLi

)−1
. (8)

Proof. We show the proof for i = 1 and −i = 2 for clarity. Expanding M1 = M−⊤
2 M1 by using

block matrix inversion on M−⊤
2

M−⊤
2 =

[ (
D⊤

2 −B2A
−⊤
2 B⊤

2

)−1 −
(
D⊤

2 −B2A
−⊤
2 B⊤

2

)−1
B2A

−⊤
2

−A−⊤
2 B⊤

2

(
D⊤

2 −B2A
−⊤
2 B⊤

2

)−1
A−⊤

2 +A−⊤
2 B⊤

2

(
D⊤

2 −B2A
−⊤
2 B⊤

2

)−1
B2A

−⊤
2

]

we deduce that

M1 = M−⊤
2 M1 =

[
G−1E G−1F

A−⊤
2 (B1 −B⊤

2 G
−1E) A−⊤

2 (D1 −B⊤
2 G

−1F )

]
, (9)

with

G = D⊤
2 −B2A

−⊤
2 B⊤

2 , E = A1 −B2A
−⊤
2 B1, F = B⊤

1 −B2A
−⊤
2 D1.

We have specifically chosen a block matrix inversion that requires A⊤
2 and G to be invertible, yet

does not explicitly require D2 to be invertible —in many practical cases it will not be. Proceeding
from the update (6), we have that

L+
1 = −

[
A⊤

2 − (B1 +D1L1)(A1 +B⊤
1 L1)

−1B2

]−1 (
B⊤

2 − (B1 +D1L1)(A1 +B⊤
1 L1)

−1D⊤
2

)
.

Applying the Woodbury matrix identity to the inverse
[
·
]−1

=
[
A⊤

2 − (B1 +D1L1)(A1 +B⊤
1 L1)

−1B2

]−1

= A−⊤
2 +A−⊤

2

(
B1 +D1L1

)(
A1 +B⊤

1 L1 −B2A
−⊤
2

(
B1 +D1L1

))−1
B2A

−⊤
2

= A−⊤
2 +A−⊤

2

(
B1 +D1L1

)(
E + FL1

)−1
B2A

−⊤
2

and collecting terms, we deduce that

L+
1 = −A−⊤

2 B⊤
2 +A−⊤

2 (B1 +D1L1)(A1 +B⊤
1 L1)

−1D⊤
2

−A−⊤
2 (B1 +D1L1)(E + FL1)

−1
[
B2A

−⊤
2 B⊤

2 −B2A
−⊤
2 (B1 +D1L1)(A1 +B⊤

1 L1)
−1D⊤

2

]

After some algebraic manipulation, we have that the last multiplicative term in [·] satisfies
[
·
]
= B2A

−⊤
2 B⊤

2 −B2A
−⊤
2

(
B1 +D1L1

)(
A1 +B⊤

1 L1

)−1
D⊤

2

= −G+D⊤
2 +

(
−B2A

−⊤
2 B1 −B2A

−⊤
2 D1L1

)(
A1 +B⊤

1 L1

)−1
D⊤

2

= −G+
(
A1 +B⊤

1 L1 −B2A
−⊤
2 B1 −B2A

−⊤
2 D1L1

)(
A1 +B⊤

1 L1

)−1
D⊤

2

= −G+ (E + FL1)(A1 +B⊤
1 L1)

−1D⊤
2 .

Substituting this into the expression for L+
1 and simplifying gives

L+
1 = −A−⊤

2 B⊤
2 +A−⊤

2 (B1 +D1L1)(A1 +B⊤
1 L1)

−1D⊤
2

−A−⊤
2 (B1 +D1L1)(E + FL1)

−1
(
−G+ (E + FL1)(A1 +B⊤

1 L1)
−1D⊤

2

)
.

= −A−⊤
2 B⊤

2 +A−⊤
2 (B1 +D1L1)(A1 +B⊤

1 L1)
−1D⊤

2

+A−⊤
2 (B1 +D1L1)(E + FL1)

−1G−A−⊤
2 (B1 +D1L1)(A1 +B⊤

1 L1)
−1D⊤

2

= −A−⊤
2 B⊤

2 +A−⊤
2 (B1 +D1L1)(E + FL1)

−1G

8



Arranging further and finally comparing with (9) gives

L+
1 =

(
A−⊤

2

(
B1 +D1L1

)
−A−⊤

2 B⊤
2 G

−1
(
E + FL1

))(
E + FL1

)−1
G

=
(
A−⊤

2

(
B1 −B⊤

2 G
−1E

)
+A−⊤

2

(
D1 −B⊤

2 G
−1F

)
L1

)(
G−1E +G−1FL1

)−1

= (C1 +D1L1)(A1 +B1L1)
−1,

which concludes the proof.

We note that this update can be written as
[
I
L+
1

]
= M1

[
I
L1

] [
A1 +B1L1

]−1
(10)

Iterating from an initial conjecture L1(0) gives
[

I
L1(1)

]
= M1

[
I

L1(0)

] [
A1 +B1L1(0)

]−1
(11)

Iterating again and then plugging in (11) for the (∗) term gives
[

I
L1(2)

]
= M1

[
I

L1(1)

]

︸ ︷︷ ︸
(∗)

[
A1 +B1L1(1)

]−1
= M1 ·M1

[
I

L1(0)

] [
A1 +B1L1(0)

]−1[
A1 +B1L1(1)

]−1

Continuing the iteration process for k steps leads to

[
I

L1(k)

]
=

[
A1 B1

C1 D1

]k [
I

L1(0)

]
Πk−1

t=0 (A1 +B1L1(t))
−1 (12)

In some sense the evolution of L1(k) is given by repeated application of M1 as in a discrete time
linear system. However, the right multiplication by Πk−1

t=0 (A1 + B1L1(t))
−1 makes the evolution

nonlinear and more complicated. Some features of the evolution of linear systems do apply, however.
Specifically if [I;L1(0)] initially spans an M1–invariant subspace, then [I;L1(k)] will remain within
that subspace as well for all k. This fact is at the heart of the equilibrium analysis in the next
section.

4 Equilibrium Analysis via Invariant Subspaces

We can find equilibrium points for the LFT dynamics using invariant subspaces. The following
theorem defines fixed points of the composite LFT dynamics (8) from which CCVE can be directly
computed.

Theorem 2 (Equilibrium Computation). Let K1 = [Y1;X1] ∈ Cd×d1 where Y1 ∈ Cd1×d1 and
X1 ∈ Cd2×d1 define an M1–invariant subspace where Y1 is square and nonsingular. It follows that
L1 = X1Y

−1
1 ∈ Cd2×d1 is fixed point of the composite LFT dynamics (8). A completely analogous

statement holds for L2 = X2Y
−1
2 .

9



Proof. Select the columns of K1 to span a right-invariant subspace of M1, so that M−1
1 M⊤

2 K1 =
K1Λ. In general, K1 can be complex leading to complex conjectures. For problems with real
parameters, however, K1 can often be chosen to be real. Even if the invariant subspace contains
conjugate pairs of eigenvectors, K1 can be chosen to be a real basis with vectors spanning any planes
of rotation and Λ will simply be block diagonal as opposed to diagonal. The one exception to this is
if the M1-invariant subspace contains only one complex eigenvector from a complex conjugate pair
(see Remark 2 below). Since M1 is invertible, the matrix Λ will be as well. Hence we have that

M1

[
Y1
X1

]
=

[
Y1
X1

]
Λ =⇒

[
A1 B1

C1 D1

] [
I
L1

]
=

[
I
L1

]
H1

where we have right multiplied by Y −1
1 and plugged in L1 and H1 = Y1ΛY

−1
1 . Note that H1 is

invertible.
The top equation gives

(
A1 +B1L1) = H1. Plugging this result into the bottom equation gives

C1 +D1L1 = L1(A1 +B1L1) which implies L1 =
(
C1 +D1L1)(A1 +B1L1)

−1. This verifies that
L1 = X1Y

−1
1 is a fixed point of the dynamics as claimed which completes the proof.

We note that in the case where Y1 is not invertible in the construction above, this method cannot
be used and we leave analysis of this case to future work.

While the choice of M1–invariant subspace matters for the computation of the equilibrium, the
choice of basis for this space does not.

Proposition 2 (Invariance with respect to basis.). Let K1 =
[
Y1; X1

]
and K ′

1 =
[
Y ′
1 ; X ′

1

]
be

two different bases for the same M1–invariant subspace with Y1, Y
′
1 square and non-singular. Then

L1 = X1Y
−1
1 = X ′

1Y
′−1
1 .

Proof. Since K1 and K ′
1 are bases for the same space, there exists square, non-singular W such that

K ′ = KW . It follows that X ′
1Y

′−1
1 = X1WW−1Y −1

1 = X1Y
−1
1 , which completes the proof.

4.1 Alternative Computation

The equilibrium solution can be derived from (6) using an alternative method without initially
showing that the composite LFT map is given by the formula in Theorem 1. Since the analysis is
more direct—and also provides inspiration for Theorem 1 and a useful perspective for proofs later
on—we reproduce it here. Expanding and rearranging (6) at equilibrium, we get that A⊤

2 L1−(B1+
D1L1)(A1 +B⊤

1 L1)
−1B2L = −B⊤

2 + (B1 +D1L1)(A1 +B⊤
1 L1)

−1D⊤
2 which implies

A⊤
2 L1 +B⊤

2 = (B1 +D1L1)(A1 +B⊤
1 L1)

−1(D⊤
2 +B2L1). (13)

Using this form of the fixed point equations, we can solve for the equilibrium using a similar invariant
subspace argument.

Proposition 3 (Alternative Equilibrium Computation). Let the columns of K1 =
[
Y ⊤
1 X⊤

1

]⊤ solve
the generalized eigenvalue problem M1K1 = M⊤

2 K1Λ. Then L1 = X1Y
−1
1 solves (13).

Proof. The expression M1K1 = M⊤
2 K1Λ gives

[
A1 B⊤

1

B1 D1

] [
I
L1

]
=

[
D⊤

2 B2

B⊤
2 A⊤

2

] [
I
L1

]
H1 (14)

where H1 = Y1ΛY
−1
1 . This expression arises since we have right multiplied by Y −1

1 and plugged
in L1 = X1Y

−1
1 . Again, since M1 is non-singular, H1 will be as well. The top and bottom

equation, respectively, can be rearranged to deduce that (A1 +B⊤
1 L1)

−1(D⊤
2 +B2L1) = H−1

1 so that
(B1 +D1L1)H

−1
1 = (B⊤

2 +A⊤
2 L1). Plugging in H−1

1 leads to (13), which concludes the proof.
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Inspiration for the the composite dynamics can then be seen by noting that for invertible M2,
we see that M1K1 = M⊤

2 K1Λ ⇐⇒ M−⊤
2 M1K1 = K1Λ.

At first pass, there are many ways to choose an M1–invariant subspace to compute L1. Explicitly,
there are d choose d1 ways to select a basis of eigenvectors. A further stability analysis, however,
shows that there is only one way to select an invariant subspace that leads to a stable L1 when the
eigenvalues of M1 have distinct magnitudes. This analysis is given in Section 5.

5 Equilibrium Stability

We next characterize the stability properties of fixed points of (3)—which includes the set of
CCVE—and show how stability is related to the matrices Mi, i = 1, 2.

The local stability of a nonlinear system can be characterized by examining the eigenstructure
of the local linearization; in particular, by the Hartman-Grobman theorem, if the eigenvalues of the
local linearization evaluated at a fixed point of the nonlinear system have modulus less than one,
then the fixed point is a locally asymptotically stable equilibrium of the nonlinear system.

Theorem 3 (Perturbation Dynamics). The linearized perturbation dynamics at equilibrium are
∆L+

i = Ωi(∆Li) = (Di − LiBi)∆Li(Ai +BiLi)
−1.

Proof. Perturbing the equilibrium conjectures gives L+
i + ∆L+

i = (Ci + DiLi + Di∆Li)(Ai +
BiLi + Bi∆Li)

−1. At equilibrium Li = L+
i , we have that (Li + ∆L+

i )(Ai + BiLi + Bi∆Li) =
(Ci + DiLi + Di∆Li). Recall that in equilibrium Li(Ai + BiLi) − (Ci + DiLi) = 0. Therefore,
we deduce that ∆L+

i = (Di − LiBi)∆Li(Ai +BiLi +Bi∆Li)
−1. Applying the Woodbury matrix

identity to the inverse and noting limits we further deduce that

∆L+
i =

(
Di − LiBi)∆Li(Ai +BiLi)

−1 − (Di − LiBi)∆Li(Ai +BiLi)
−1Bi

·
(
I +∆Li(Ai +BiLi)

−1Bi

)−1
∆Li(Ai +BiLi)

−1.

Noting that
(
I +∆Li(Ai +BiLi)

−1Bi

)−1 → I as ∆Li → 0 and then dropping higher order terms
completes the proof.

Note that Ωi(·) for i = 1, 2 are linear operators in the form of a discrete time Lyapunov equation.
To understand their stability, we recall a result from discrete time Lyapunov theory given here
without proof.

Lemma 1 (DT Lyapunov Operators). For A,B ∈ Cn×n, the linear operator A(X) = AXB has
eigenvalues of the form λjµk where λj ∈ spec(A) and µk ∈ spec(B).

The following characterization of the spectra of Ωi(·) then follows immediately.

Theorem 4. The spectrum of the linear operator Ωi(·) is given by

spec(Ωi) =

{
λj

µk

∣∣λj ∈ spec(Di − LiBi), µk ∈ spec(Ai +BiLi)

}
.

The next theorem establishes equivalent conditions for local stability.

Theorem 5. Given a fixed point (Lc
1, L

c
2) of (6), without loss of generality, the following are equiv-

alent statements:

a. The fixed point (Lc
1, L

c
2) is locally asymptotically stable with respect to (6) for i = 1, 2;

11



b. The eigenvalues ξj ∈ spec(Ω1(L
c
1)) as such that |ξj | < 1 for all j.

c. The matrix K1 ∈ Cd×d1 from Theorem 2 (and Proposition 3) is chosen to span an M1–
invariant subspace constructed using the d1 largest magnitude eigenvalues;

Theorem 5 not only establishes equivalent conditions for stability, but also shows that it is
sufficient to establish stability for one player in order to show the combined dynamics (i.e., (6) for
i = 1, 2) are stable. However, the (local) rates of convergence for each player will depend on the
eigenstructure of their individual dynamics.

Corollary 1. Players locally converge to (Lc
1, L

c
2) with iteration complexity O(ξki,max) where ξi,max :=

maxξ∈spec(Ωi(Lc
i )
|ξ| for player i = 1, 2, respectively.

This result is analogous to the scalar Möbius transformation case and to prove it we need to
further elucidate the eigenstructure of Mi which we do in the next section.

The following proposition (which is of independent interest) characterizes the eigenstructure of
M1, without loss of generality, and is used to prove Theorem 5.

Proposition 4. The matrices L1 computed from Theorem 1 and L2 from (5) define the following
similarity transforms on M1 and M2, respectively:

[
I 0

−L1 I

] [
A1 B1

C1 D1

] [
I 0
L1 I

]
=

[
H1 B1

0 H′
1

]
(15)

[
I −L2

0 I

] [
D2 C2

B2 A2

] [
I L2

0 I

]
=

[
H′

2 0
B2 H2

]
(16)

where H1 = A1 +B1L1, H′
1 = D1 −L1B1, H2 = A2 +B2L2, and H′

2 = D2 −L2B2. Furthermore,
the spectrum of the M1-invariant subspace spanned by [I;L1] is spec(H1) and the spectrum of the
M2-invariant subspace spanned by [L2; I] is spec(H2) and we can also write

H1 = A1 +B1L1 =
(
D⊤

2 +B2L1

)−1(
A1 +B⊤

1 L1

)

H′
2 = D2 − L2B2 = (A1 +B⊤

1 L1)
−⊤(D⊤

2 +B2L1)
⊤.

and H′
2 is similar to H−⊤

1 .

Proof. The expression in (15) is immediate with the zero block coming from the fixed point equation
(8):
[

I 0
−L1 I

] [
A1 B1

C1 D1

] [
I 0
L1 I

]
=

[
A1 +B1L1 B1

−L1(A1 +B1L1) +C1 +D1L1 D1 − L1B1

]
=

[
H1 B1

0 H′
1

]
.

To see the similarity transform on M2, note that (5) can be rewritten as
[

I
−L⊤

2

]
= M1

[
I
L1

]
(A1 +B⊤

1 L1)
−1. (17)

Transposing and expanding allows us to write
[
I − L2

]
M2 =

[
I − L2

]
M−⊤

1 M2 = (A1 +B⊤
1 L1)

−⊤ [
I L⊤

1

]
M2.

The expression in (14) gives

M⊤
2

[
I
L1

]
= M1

[
I
L1

]
H−1

1 ,
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which allows us to write
[
I − L2

]
M2 = (A1 +B⊤

1 L1)
−⊤H−⊤

1

[
I L⊤

1

]
M⊤

1

= (A1 +B⊤
1 L1)

−⊤H−⊤
1 (A1 +B⊤

1 L1)
⊤(A1 +B⊤

1 L1)
−⊤ [

I L⊤
1

]
M⊤

1

= H′
2

[
I − L2

]

where in the last step we have used (17) again and substituted H′
2 = [A1 + B⊤

1 L1]
−⊤H−⊤

1 [A1 +
B⊤

1 L1]
⊤ Note that H′

2 and H−⊤
1 are similar. From the above expression, we deduce the top row of

the following equation:
[
I −L2

0 I

] [
D2 C2

B2 A2

]
=

[
H′

2 0
B2 A2 +B2L2

] [
I −L2

0 I

]

and the bottom row is then immediate. Right multiplying by
[
I L2
0 I

]
gives (16). The characterization

of the invariant subspaces spanned by [I;L1] and [L2; I] follows immediately from the block diagonal
structure. The alternate characterizations of H1 and H′

2 follow from the characterization of H1 given
in Proposition 3 and the definition of H′

2 above which concludes the proof.

We now prove Theorem 5.

Proof of Theorem 5. The fact that a.⇐⇒b. is immediate from Hartman-Grobman (Sastry, 2013).
Hence, it only remains to show that a.⇐⇒c.

The block diagonal structure given in Theorem 4 gives that spec(Mi) = spec(Hi) ⊔ spec(H′
i).

Since the perturbation dynamics are given by ∆L+
i = H′

i∆LiH
−1
i the result immediately follows

for L1 noting that spec
(
H1

)
corresponds to the invariant subspace K1 and the Lyapunov stability

arguments in Lemma 1. Since H−⊤
1 and H′

2 are similar (see Theorem 4) and noting that spec(M1) =
1/ spec(M2) as stated previously, this choice also implies that player 2’s perturbation dynamics are
asymptotically stable which in turn implies that the dynamics (6) are locally asymptotically stable
around (Lc

1, L
c
2).

Remark 2. A result of the analysis in Theorem 5 is that if the eigenvalues of M1 (and M2) clearly
divide into large and small magnitude sets (of the appropriate number) where all the eigenvalues
in the large set are strictly large than those in the small set, then there is a unique way to choose
an (asymptotically) stable CCVE. When the eigenvalues cannot clearly be divided this way, there
may be multiple ways to construct (marginally) stable CCVE. Two particularly interesting cases are
when there are eigenvalues from the same Jordan subspace or complex eigenvalues from the same
conjugate pair in each set. In this second case in particular, the only (marginally) stable conjectures
will be complex and any associated real conjectures will exhibit oscillatory behavior analogous to
elliptic Möbius transformations. These interesting cases will be examined in future work.

6 Observations on the Second Order Conditions

Given the stability considerations given above there is generally a unique (or limited number) of
stable first-order CCVE—i.e., first-order CCVE that can be reached via the response dynamics
between the players. Once these stable equilibria are determined, one should check the second order
conditions

Ai + L⊤
i Bi +B⊤

i Li + L⊤
i DiLi ≻ 0 for i = 1, 2. (18)
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Figure 1: Player Actions and Predictions: The actions and predictions of (a) player 1 and (b) player
2. Players initialize at the Nash equilibrium, ie. (L1, ℓ1) = (0, xNE

2 ) and (L2, ℓ2) = (0, xNE
1 ), and

then update their conjectures via the conjectural variations iteration (6). Each player’s action and
also their guess of the other player’s action are plotted in R2 and R3 respectively. Both the actions
and predictions converge to the stable CCVE, however, note that (unsurprisingly) the predictions
are not accurate until convergence.

to see if the stable first-order CCVE is well-posed—i.e., if the stable point is a CCVE for the game.
In general this is not guaranteed and will depend on the relative magnitudes of the parameters
Ai, Bi, and Di. In particular, a large enough Ai ≻ 0 will clearly make it more likely for (18) to be
satisfied. Note also that (18) can be rewritten as

[
I
L1

]⊤ [
A1 B⊤

1

B1 D1

] [
I
L1

]
≻ 0,

[
L2

I

]⊤ [
D2 B2

B⊤
2 A2

] [
L2

I

]
≻ 0,

and thus M1,M2 ≻ 0 are sufficient conditions for (18) to be satisfied; however, in many practical
problems, M1,M2 ⊁ 0 since D1 and D2 may be zero, low rank, indefinite, or even negative definite.
Simple numerical experiments also show that M1,M2 ≻ 0 is far too conservative of a condition and
that (18) often holds even when it does not. Further analysis of this condition is left to future work.

7 Numerics

In this section, two examples demonstrate the convergence of the proposed iterative method for
quadratic games with different dimensions. The iterative method converges to the unique stable
CCVE in both examples. The code and parameters for the examples are provided1.

In the first example, we tested the conjectural variations iteration update (6) for a two-player
quadratic game on a five-dimensional joint action space, R2 × R3. The cost matrices Ai, Di were
chosen to be scaled identities, Bi were randomly sampled from a uniform distribution, and ai, bi

1The code and parameters for all experiments are available at https://github.com/bchasnov/2023lcssCCVE.
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were chosen to be zero or one vectors. The cost matrices for player 1 were

A1 =

[
1 0
0 1

]
, B1 =



−0.1 0.2
−0.5 −0.2
−0.4 −0.4


 , D1 = −



0.2 0 0
0 0.2 0
0 0 0.2


 , a1 =

[
0
0

]
, b1 =



0
0
0


 ,

and for player 2 were

A2 =



1 0 0
0 1 0
0 0 1


 , B2 =

[
0.3 0.2 0.1
0.0 0.1 −0.2

]
, D2 = −

[
0.1 0
0 0.1

]
, a2 =



1
1
1


 , b2 =

[
1
1

]
.

At iteration k, the players formed affine conjectures c−i(xi) = Li(k)xi+ℓi(k), i = 1, 2 where L1(k) ∈
R3×2, L2(k) ∈ R2×3, ℓ1(k) ∈ R3 and ℓ2(k) ∈ R2. The players initially play a Nash equilibrium
(xNE

1 , xNE
2 ) which is equivalent to assuming conjectures (L1, ℓ1) = (0, xNE

2 ) and (L2, ℓ2) = (0, xNE
1 ).

For 20 iterations, each player updates their conjecture via L1(k+1) = LFT1,2(L2(k)) and L2(k+1) =
LFT2,1(L1(k)) respectively. At each iteration, player i also computes their optimal action (assuming
their current conjecture is correct) by solving

xi(k) = argmin
xi

{fi(xi, x−i)| x−i = Li(k)xi + ℓi(k)}

and their current guess of what the other player is doing x̂−i(k) = Li(k)xi(k) + ℓi(k). Actions for
each player as well as the other player’s guess of their actions are plotted in Fig. 1.

This iteration process converges to the stable CCVE, confirming the theoretical prediction
(Fig. 2). Note that while the players initially play Nash strategies, conjecturing about the other
player’s optimization problem leads them away from the Nash equilibrium to the CCVE. This
demonstrates that players that make conjectures can end up at dramatically different equilibria
than players that do not. Note also that each player’s prediction of the other player’s actions is
inaccurate until the conjectures converge and player’s reach the CCVE. Finally, we plot the cost for
each player fi(xi(k), x−i(k)) at each iteration and the total or social cost at each iteration

fs

(
x1(k), x2(k)

)
= f1

(
x1(k), x2(k)

)
+ f2

(
x1(k), x2(k)

)

as well as the optimal social cost f∗
s = minx1,x2 fs(x1, x2) in Fig. 3. Interestingly in this case, each

player’s cost is actually lower at the CCVE then at Nash (though this is not guaranteed in all cases).
In the second example, we tested the conjectural variations iteration update (6) for larger two-

player quadratic game on R50×R60. The cost matrices for the player 1 were A1 = 13Id1 , D1 =
−0.2Id2 , a1 = 0, b1 = 0 and for player 2 were A2 = 13Id2 , D2 = −0.1Id1 , a2 = 1, b2 = 1
where d1 = 50, d2 = 60, the identity matrix Id is d dimensional and 0, 1 are zero and one vectors.
Additionally, the cost matrix B1, B2 was randomly sampled from a uniform distribution between
−1 and 1. For five randomly sampled quadratic games, we found that the conjectural variation
iteration converges to the unique stable CCVE point. The linear fractional transformation was
implemented by using standard numerical methods for solving linear matrix equations. Fig. 4 plots
the distance of the iterates from the stable equilibrium decreasing at an exponential rate for all
five quadratic games. These examples show the computability of the stable consistent equilibria by
numerical methods.

In both examples, for comparison, we also compute the stable consistent conjectural variations
equilibrium directly from the cost matrices without running the conjectural variation iteration.
We applied Theorem 2 to solve for a fixed point of the composite linear fractional transformation
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Figure 2: Convergence of Conjectures and Actions: The conjectures (L1(k), L2(k)) converge to the
stable equilibrium conjectures and both the actions (x1(k), x2(k)) and predictions (x̂1(k), x̂2(k))
converge to the CCVE shown here for player 1 (a) and player 2 (b).

in (8). Selecting the eigenvectors corresponding to the eigenvalues with smallest magnitude to be
the columns of Y,X, the stable and consistent conjectural variation is L∗

1 = XY −1. To verify that
L∗
1 is an asymptotically stable equilibrium of the conjectural variations iteration, we applied The-

orem 4 and determined that the spectrum of the linear operator of the perturbation dynamics has
eigenvalues with magnitude less than one, thus implying that the fixed point L∗

1 is locally asymp-
totically stable with respect to (6). Local rates of convergence will depend on the eigenstructure of
the dynamics.

8 Discussion & Open Questions

We introduced a novel analysis of CCVE by drawing on tools from the analysis of coupled Riccati
equations. There are a number of interesting open questions including how players might adapt
their conjectural variations in both repeated and dynamic games by repeatedly interacting with
their opponents, as well as how players might adopt policy gradient like procedures to learn their
policies contingent on conjectures adapted over time.
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