Column Geometry Visualizations

Dan Calderone

June 7, 2023

Abstract

This tutorial paper gives basic visualizations for matrix column geometry. Matrix column
geometry is presented first with a discussion of matrix-vector and matrix-matrix multiplication.
The body of the paper is then divided into a discussion of co-domain sets and domain sets. In
the co-domain, basic set images, the range and adjoint nullspace are discussed. Particularly
focus is given to image representations of affine spaces. In the domain, basic pre-images, the
nullspace and adjoint range space are discussed at length. Particularly focus is given to nullspace
representations of affine spaces.

1 Introduction

Visualizing matrix geometry is at the heart of developing spatial intuition for linear algebra and sets
the stage for visualization of many vector related topics in modern engineering such as optimization
and machine learning.

A matrix is a block of numbers used to represent a linear transformation between vector spaces.
Definition of a matrix immediately defines both "columns" and "rows" of a matrix which have
distinct interpretations relative to the geometry of the linear transformation. In this paper, we
seek to show how the geometry of the columns relates to the structure of the linear map. The
spatial intuition we will develop will have countless applications in the theory of linear equations,
optimization, and other fields.

In the first part of the paper introduces matrix column geometry; each column of a matrix
defines where the standard basis vectors (and thus the axes) in the domain map to in the co-domain.
Basic examples and intuition are developed for matrix-vector multiplication and also matrix-matrix
multiplication.

The bulk of the paper is then divided into two sections: one visualizing co-domain sets and one
visualizing domain sets. In the co-domain section, images of basic domain sets are discussed along
with the range and adjoint nullspace. Particular focus is then given to image representations of
affine spaces. In the domain section, basic pre-images are discussed and then both the nullspace
and adjoint range are each given lengthy treatment. Finally, pre-image representation of affine
spaces are discussed at length.

We note that this paper assumes familiarity with the notation and vector visualization techniques
presented in the following monograph.

e Vector visualizations

This paper is also meant to be part 1 of two part series; the second paper discusses matrix row
geometry along a parallel track.!
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2 Basic Column Geometry

The columns of a matrix A € R™*™ are vectors in the co-domain of the linear map

| |
A= 1A --- A,|, A; e R™
|

Figure 1: Illustration of columns of a matrix A € R?*4. Each column A; is a vector in R

Each individual column A; € R™ tells where the jth standard basis vector (in the domain) gets
mapped under the transformation. Explicitly AI; = A;. We can see where a vector x € R" in
the domain gets mapped by breaking up z into a linear combination of standard basis vectors (ie.
x = hxy + -+ + Lyx,), transforming each standard basis vector to the appropriate column, and
then recombining. Algebraically, this is given by

Ax = A(lel +-~~+In:cn)
=ALx1+---+ Al,
=Aixi + -+ Apzy

Graphically, we illustrate this process below for matrices A € R?*? and also A € R3*3.
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Figure 2: Multiplication of a vector = by a matrix A for (left) 2 € R? by a matrix A € R?*2? and
(right) x € R3 by a matrix A € R3*3

As in our discussion of vectors, the various routes from the origin to the tip of the vector along
edges of the hypercube relate to the different order the scaled columns can be added in. Note also
that if we take A = I, we simply get the vector itself back.

We can therefore "see" vectors in the domain by squinting our eyes and visualizing the axes of
the domain (R™) positioned relative to the columns of A as illustrated here in the 2 x 2 case.

Co-Domain Domain RQ

Figure 3: The columns of A show where each coordinate axis of the domain maps to and the rest
of the space is transformed with the coordinate axes.

We will use this technique ad nauseam in what follows so it is worth getting comfortable with
it.

Note here there is nothing that immediately requires that A be square. For tall matrices (fewer
columns than dimensions) the reachable points will be a subset of the co-domain; for fat matrices
(more columns than dimensions) there will be redundant ways to reach any point in the co-domain.
We give two examples here, a tall matrix A € R**? and a fat matrix A € R?*3
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Figure 4: (Left)Tall matrices (in this case A € R3*2) have fewer columns then the dimension of the
co-domain and the set of reachable points through A is a proper subspace of the co-domain. (Right)
Fat matrices (in this case A € R?*3) have more columns then dimensions of the domain and there
are redundant ways to reach any point in the co-domain through A.

It is also possible to have columns that only span a proper subspace of R™ but are not linearly
independent from each other. This is true for any matrix that is both column and row rank deficient.
We illustrate one possibility here for A € R3*3 with rank 2. Here column 3, Aj is linearly dependent
on A1 and AQ.

Range(A) e Range(4)

A € R3*3 (rank = 2) A e R¥>* (rank = 2)

Figure 5: Rank deficient matrices have extra columns that are in the span of the other columns
shown here for (left) a matrix A € R3*3 and (right) A € R34

For more than two or three columns, the space we will be visualizing is high dimensional as in
the vector illustrations in Figure XXX (with all the associated problems of depth). The co-domain
of the map is ambient vector space that the columns live in and is thus easy to visualize. Depending
on how ambitious we are, this space may be high dimensional as well. We illustrate the column



geometry of a 4 X 6 matrix in the figure below in order to give a flavor for what such an attempt
might look like. Again, "depth" would prove a major problem in this case both in the domain and
co-domain and so such pictures are limited in their usefulness.

Co-Domain R?

Ac R4X6

As

Figure 6: Column geometry of A € R**6. Note that each of the six columns is a vector in R%.

Remark 1. If we want to focus in on a particular coordinate of the output, we project the output
vector onto that particular axis. Algebraically, here we are considering the inner product between x
and that particular row of A, AjTa: We note that here if we just focus at the distance of the output
along a particular axis we are actually using the linear combination visualization for inner products
presented before to visualize flle. Note that as discussed in the inner product visualization section
the position of the columns in the other coordinates i’ # i will not actually affect the length of the
output along the ith direction. We can think of visualize Ax as actually using the linear combination
innner product visualization method on all axes at once as illustrated in Figure XXX. This is perhaps
a backwards view because this linear combination inner product visualization technique is actually
leveraging the power of column geometry to visualize inner products (instead of vice versa) but the
connection is interesting and worth noting. A more thorough discussion of this is given in Appendix
5.1.
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Figure 7: When drawing the column geometry, the projection of the columns onto axis j gives the
jth row of the matrix in it’s parallel representation.

3 Co-Domain Sets

We now turn our focus to visualizing sets in the co-domain and the domain relative to the column
geometry of a matrix. We start with the co-domain since column geometry provides a a natural
way to visualize images of (domain) sets transformed by the matrix. The bulk of this section will
focus on visualizing domain set, ie. pre-images of (co-domain) sets. These visualizations will be
significantly more subtle and in some ways even more fruitful.

Column geometry is quite natural for visualizing sets in the co-domain. In particular, we will
focus on images of sets (in the domain) transformed by the matrix.

3.1 Matrix Multiplication for Column Geometry

3.1.1 Right Multiplication

When we right multiply a matrix A € R™*™ by a matrix B € R"*P each columns of B take linear
combinations of the columns of A. Algebraically, this corresponds to treating each column of B as
a separate vector that gets multiplied by A, ie.

AB=A[By -+ B)| = 4B - AB)]
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Figure 9: Comparison of steady state results (a) x method (b) y method

AB € R¥*4

Figure 8: The column geometry of AB is given by drawing the columns of B relative to the columns
of A shown here for A € R?*? and B € R?*4,



Figure 10: The column geometry of a product of more matrices is given by iterating on the above
process shown here for the product ABCD with A € R?*2, B € R?*3, C € R**2, and D € R?*4,
Note the dimensions of the domain and co-domain for each matrix.

3.2 Range

The image of the entire domain through the matrix is called the range. Visualizing the range is
quite natural in terms of column geometry since it is simply the span of the columns of the matrix.
Note for a matrix A € R™*™ with rank k the dimension of the range is k, the span of k linearly
independent columns. If & = m, then the span is the entire co-domain. We illustrate the range of
two matrices with co-domain of R3, A € R3*! and R3*2.
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Figure 11: Range (column span) for matrices (left) A € R3*! and (right) A € R3*2. Note that each
matrix is tall and the range is a proper subset of R3.

The discussion above gives several other good examples of matrix ranges.

3.3 Nullspace of AT

The orthogonal complement to the range of A € R"™*" is the set of vectors with no component in
the range. This subspace corresponds with the nullspace of AT, ie. is orthogonal to all the columns
of A. We illustrate this here for the range examples above. Note that the dimension of the nullspace
of AT is m — k, the difference between m, the dimension of the co-domain m and the rank k. As a
result, if m = k then the nullspace has dimension 0 and is simply the 0 vector.

Nullspace(AT)

Nullspace(AT) ! R3

Range(A)

A e R3%2

Figure 12: The nullspace of AT is orthogonal to the columns, illustrated here for the matrices in
Fig. 11.

We now proceed to images of basic sets. Note that all the images that follow will be subsets of
the range.

3.4 Basic Set Images

The images of several basic sets, the 1-norm ball and the 2-norm ball are given below for A € R?*2
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Figure 13: Image of (left) a 1-norm sphere and (right) a 2-norm sphere for A € R?*2,

We also give several examples of the image of 1-norm and 2-norm through a matrix A € R3*3

Figure 14: Image of (left) a 1-norm sphere and (right) a 2-norm sphere for A € R3*3,

It is worth noting how the direction of a particular column A; actually has no impact on the
subspace orthogonal to the jth coordinate vector and actually it is the other columns {A4;};+; whose
span determines these subspaces. This is immediate from the fact that z; = 0 and thus the image
Ar = A1 + -+ + Apxy, should be independent from A; these points x; but the affect on the
geometry is worth noting in the domain.

Note that the simpDFlex is highlighted as well. These sets were chosen as they show the geomery
of each orthant (in the domain) under the transformation. The location of each orthant should be
noted by the reader.

We now show several examples of the image of the 2-norm ball for rank-deficient matrices. The
first two matrices are non-square but full column or row rank depending on context. The first
matrix A € R3*? is tall and thus the columns do not span the full co-domain and as a result the
output image is flat relative to the co-domain. The second matrix A € R?*3 is fat. Some of the
directions in the domain get mapped to the same point in the domain, ie. some information is lost
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(literally flattened) in the transformation.

Figure 15: Image of 2-norm spheres through low rank matrices in two cases: (left) A € R3*? is tall
and (right) A € R?*3 is fat.

Finally, we show a matrix that is both column and row rank deficient, A € R3*% with rank 2.
Here the matrix flattens two dimensions of the 4D set and then presents them in a 2D subspace of
the 3D domain.

Figure 16: Image of 2-norm spheres through a matrix A € R3*4 which is rank-2 (rank deficient).

3.5 Convex Hulls

We now focus specifically on the image of the simplex, ie. the convex hull of the columns of A. We
will denote this set AA as is fitting

AA:{AxERm‘xEAn}
:{Axe]Rm‘lszl,xZO}
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and refer to Ax for x € A as a convex combination of the columns of A. The convex hull of a set of
points (or vectors) is the set of points "between" those vectors. We illustrate this here for A € R?*?

2
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i 1A+ 24,
E ° Ay + %Az
E %z‘h + %AQ
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Figure 17: Convex hull of columns for (left) a matrix A € R?*2 and (right) A € R3*3. Note carefully
where linear combinations z such that 17z = 1 and 2 > 0 map to between the various columns.

Unlike the images of other types of sets, convex hulls do not actually depend on the location of
the origin. The convex hull of any subset of columns is also within the convex hull (as is not hard
to show). We also note that the arithmetic mean of the vectors (the average) is in the center of the
convex hull.

For non-square A, the convex hull may be flat or the action of A may collapse dimensions of
A. Here we show this set for A € R?>*5 with the outline of the convex hull illustrated. This case
where A is fat is quite common in applications and often the outline of the convex hull (as opposed
to the internal structure of the collapsed simplex is what is of interest. The projection of the edges
and faces down onto the lower dimensional space may overlap significantly. The average of the
points will still be near the center of the convex hull though more points to one side will naturally
shift it toward those points. We also illustrate the average here with the hypercube defined by the
coordinates %1 illustrated.

12
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Figure 18: Convex hull of the columns of a matrix A € R2*5. This convex hull is the image of a
5D simplex collapsed into a 2D space. The specific coordinates for a point x = (5, 3 5) are
shown on the right.

For matrices A%2*? there is a specific parametrizetion of the convex hull that is often useful. In
this case the set is a line segment between the two vectors and can be parametrized by a single
variable . The constraints on € R? can be rewritten

{ |:x1:| ERQ 1 +x9 =1, 21,72 ZO}
x2

:{BQFLE“Q]GW Ogagl}

Here the convex hull is parametrized by starting at one vector (say As) when o = 0 and proceeding
along the difference between the two vectors as « is increased until reaching the other vector (A;)
when o = 1.

1A + 2945 = aA; + (1 — a) Az
= Ay + Oé(Al — Ag)

This construction is illustrated here.

13
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Figure 19: Alternative (difference) perspective on convex hulls for A € R2*2,

Similar constructions are possible for more than two columns where the set is parametrized
as starting at one column and proceeding to the other columns while varying n — 1 parameters
{zj}?;ll. We list one such construction here that may be of use. Consider the matrix consisting of
the differences between each column and a specific column (we choose the first column)

| |
Ap— Ay o Ay — A = AW

Note here that this matrix is given by AW where W € R™*"~! is given by

o]

I : :
0o --- 1

The convex hull of A can be denoted

AA:{yERm|y:A1+AWz,
172 <1, 2>0, ze R"}

This construction is illustrated here for A € R3*3

14
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Figure 20: Difference perspective on the convex hull of A € R3*3 measured from the column A;.

It is worth noting the relationship between these two characterizations of convex sets. For a
point y € AA we have that

y=A1+ AWz =AlL + AWz = A(l; + Wz)

Here we have that x
c=0L+Wz= [lfsz R zn,l]T
Note here that if z; > 0 and 172 < 1 then each x; > 0. Note also that

1Te=1T(L+W2) =1Tn+1TW2=1T1, =1

Remark 2. In general, the above constructions are more useful for smaller x. If x € R™, reducing
to z € R ! wsually does not give much advantage. If x € R3, reducing to x € R? can often be
useful; and if © € R? (as in the first example), reducing to z € R actually turns a vector problem
wnto a scalar problem which can be very useful.

3.6 Subspace Representations

We now turn to discussing images of subspaces.
The first subspace representation

Si={zeR"|z=Nz 2R}

is naturally thought of as the range of V.

15
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Figure 21: First subspace representation as the range (column span) of a matrix N € R™*¢ where
m (here m = 3) is the ambient dimension and d (here d = 2) is the dimension of the subspace. x in
the subspace is given by # = Nz for some independent coordinates z € R%. Changing the basis for
the subspace N/ results in different coordinates for the same point z; x = N’z’. Note that z and 2’
have the same dimension.

Note that for a particular subspace, the choice of IV is not unique; it is only important that they
have the same span. For a particular 2D subspace in R?, we illustrate two matrices N and N’ that
have the same span be used to represent the same subspace.

It is worth noting the relationship between different representations N and N’. Specifically there
exists a matrix M € R¥** such that N’ = NM and

r=N7Z=NM7 =Nz

and thus we have the relationships N/ = NM and z = M2'. We illustrate this here.

2 recR?

Ny =NM, M,

N}= NM,

Figure 22: Calculating the coordinates of each column of N’ with respect to N allows us to quantify
relationships between bases for subspaces, N’ = NM where each column M; is the coordinates of
N! with respect to N.

16
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Figure 23: Writing the columns of N’ in coordinates relative to N allows us to transform between
the z and 2’ representations of x. If N’ = NM then 2/ = Mz.

3.7 Subspace Images

Visualizing the image of domain subspaces when they are mapped into the co-domain is straight
forward in that we just simply see them relative to the columns of A. Using the representations
above, we can simply apply the matrix transformation to each column of N. We illustrate this here
for the matrix B € R3*3 shown.

BN2 R3

2/

Figure 24: The basis for the image of a subspace through a matrix B is given simply by multiplying
BN, ie. taking the columns of N as coordinates relative to B rather than the identity I.

3.8 Affine Spaces

The first characterization of affine spaces

Alz{xER”‘x:Nz—i—xo, ZGRk}

17



is simply a subspace shifted by xo. We illustrate this here.

Similar to the discussion for subspaces above, for a particular affine space the choice of both N
and xg are not unique. We illustrate three possibilities for the affine space shown above.

In fact, xg can be any point in the space and the columns of N can be any basis for the
appropriate subspace. (Actually the columns of N need not even be linearly independent, though
if they aren’t than there will be redundant coordinates z that reach the same point in the space.)
It is worth noting algebraically the relationship between these different representations. For two
separate representations (N, zg) and (N', z(), we have N’ = NM. Note that the difference z{, — z

18



is in the subspace and thus there exist coordinates such that Nu = x(, — z¢. For any point z in the
affine space

x= N2+

= NMZ' + x
:NMz'+:L‘6—:E0+x0
= NMzZ + Nu+ z

= N(Mz +u) + z9

Thus we have the relationships N’ = NM and z = Mz +u
The third affine space representation

A3={3:€]R" | x= Az, 1Tz:1,z€]Rk+1}

is an extension of the idea of a convex hull. Here the positivity constraints on each z; are removed.
Here the columns of A define k£ points that the subspace must pass through. Note that the extra
constraint 17z = 1 reduces the dimension of the set by 1. In an m-dimensional space, k (with
k < m) linearly independent points naturally defines an & — 1 dimensional subspace that passes
through all of them. For example, in R?, two points define a line; in R? three points define a plane;
etc. The image of this set through a matrix A € R™** is the k — 1-dimesional affine space passing
through all the columns. This is illustrated here for A € R?*2? with several points labeled

and for A € R3*3 with the regions defined by z’s with various sign profiles (though all summing
to 1)

19



It is fairly straightforward to see how these sets extend the convex hulls of the points. These
constructions can be quite useful when parametrizing lines and planes in R? and R3.

Again for a given affine space, the representation is not unique. We illustrate two column
representations A and A’ here.

Given two representations of the space based on the columns of A and A’, we can derive a
relationship between the two representations. Since the columns of A’ are in the affine space, we
can write A’ = AZ where the columns of Z sum to 1, ie. 17Z = 17. Given this construction we
have that

x=A2 =AZY

with z = Z2'. Note that 172 = 1772 = 172 = 1. Here we can actually see A’ as the columns of
Z transformed by A as illustrated here.

We also note several specific examples that are useful for practice and intuition. First suppose
B = 1. In this case we are simplying scaling the length of the columns of A as shown here. This
has the same effect as as modifying the constraint on « from 17z = 1 to 172 = 5. Another example

20



is letting B be a diagonal matrix B = dg(b) as shown here. Here we are scaling the columns of A
each by different lengths. If the elements of b are 41, the image becomes alternative faces of the
1-norm ball. Next, we show examples where B is some subset of columns of the identity, specifically
B = [Il I 13] and B = [Il Ig] for A € R?*4, Many other examples are obviously possible.

3.9 Affine Space Images

Visualizing images of general affine spaces represented in this way, again, is simply a matter of
transforming the columns of A. We illustrate this here for a matrix B € R3*3 for affine space
defined is similar to visualizing images of shapes and subspace. If we can "see" where each point
in the domain maps in the co-domain we can apply this to each point in the affine space. To be
precise, for visualizing images of affine spaces defined above through a matrix B we can simply
apply the transformation B to the columns of A or the columns of N and xg and see how the space
transforms. This is illustrated here briefly.

4 Domain Sets

Visualizing sets in the domain via column geometry is more subtle and difficult then visualizing sets
in the co-domain but in many ways more fruitful.

We will start with a basic discussion of visualizing pre-images for matrices with full-column rank.
Our first major payoff will come from a clean way to visualize the columns of A~! (for invertible
matrices) as the pre-image of the identity in the co-domain.

The first major subtlety will come with visualizing nullspaces of matrices that are column rank
deficient (matrice that have non-trivial nullspaces). The matrices collapse directions (dimensions)
of the domain and we will be concerned with visualizing these directions explicitly. We will spend
a large portion of this next section on visualizing these nullspaces and nullspace representations of
subspaces and affine spaces. Beyond just being geometrically interesting, these constructions will
inform several algebraic techniques that are foundational for linear proofs. In particular, we will
give very natural ways to construct nullspace bases and prove the rank-nullity theorem.

The second major subtlety in visualizing domain sets will come when we turn to visualizing the
rows of the matrix in terms of the column geometry. Many sets of interest in the domain are directly
related to the rows of A , most obviously the range of A”. Visualizing the geometry of a matrix’s
rows in terms of it’s columns is a surprisingly tricky exercise and perhaps the most unnatural we
will discuss in this paper. We hope the readers will find our treatment satisfying.

21



Remark 3. Visualizing the rows of a matriz A is the same as visualizing the columns of AT.
Algebraically, computing a matrix inverse is far more complicated than computing a matriz transpose.
Visually, however, we will see that this is directly reversed. For an invertible A, visualizing the
columns of A~1 will be much more natural than visualizing the columns of AT . It is unclear if this
is an insightful remark.

4.1 Basic Pre-Images

It is a bit more subtle to visualize the pre-image of co-domain sets before they are transformed
through the matrix. This is done by drawing the set in the co-domain and then visualizing which
points in the domain would end up in that set. Several examples for A € R?*? are illustrated here.

Note that opposite the image case discussed above, a small column tends to expand the relative
size of a set in the preimage and a large column tends to shrink it. This is due to the fact that
the columns represent the transformed standard basis vectors. If a standard basis vector will grow
substantially when transformed by A, a small component in that direction in the pre-image can
produce a large component in the image. The non-square (low-rank) case for pre-images is even
more subtle than for images. For a tall (column rank deficient) matrix, there will likely be points
in the image that are not within the range of A and thus have no corresponding points in the
pre-image. For a fat (row rank deficient) matrix, any point in the nullspace of A will be deleted by
A and is thus in the pre-image. Thus pre-images of sets for fat matrices are generally not compact.
We will revisit this in our discussion of nullspaces below.

4.2 Inverses

One of the surprisingly straight-forward applications of visualizing a pre-image is visualizing the
columns of a matrix inverse. The columns of A~! are simply the pre-image of the identity I. We
illustrate this here for several matrices R?*?

R2 RQ

s 1
I :AAI1

L

Figure 25: Visualizing A~! as the pre-image of the identity for A € R?*?

and R3%3
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Figure 26: Visualizing A~! as the pre-image of the identity for A € R3*3

This technique is surprisingly simple and should allow visually oriented readers to estimate
inverses for 2 X 2 and 3 x 3 matrices quite quickly.

Remark 4. There is a dynamic version of this visualization that can be fruitful. A reader with
n-hands could picture grabbing each column of A and pulling them to the appropriate standard basis
vector. As the columns move, the rest of the space gets dragged/stretched with them. As the columns
of A move to the standard basis vectors, the standard basis vectors will move to the columns of A",
The reader is encouraged to try this mentally for the 2 X 2 and 3 x 3 examples shown here.

Figure 27: Dynamic illustrations of inverting a matrix (left) A € R?*2 and (right) A € R3*3
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4.3 Nullspace of A

We now turn to subspaces in the domain starting with the nullspace. We note that in this discussion
it is useful to keep any intuition preimage intuition from the above discussion in mind. The nullspace
of A is the preimage of the point 0. Another way to say this is the coordinates of the point 0. Note
that in order for a non-trivial nullspace to exist there must be more columns in A than dimension
of the span of A in the co-domain. There is a classic construction for constructing a basis for a
nullspace that will aid our visualizations. For a matrix A € R"*"™ with rank k, if we select k linearly
independent columns of A (wlog assume they are the first k columns) we can write A = [ A’ A”]
with A’ € R™** and A” containing the remaining n — k columns. Since A has rank k, we can write
each column of A” as linear combinations of the columns of A’, ie. A” = A’B for some matrix
B € R¥*"=F_ We then have that A = A’ [I B]. We can see immediately then that if

=4

then AN = 0. With a little more work, we can show that the columns of N form a basis for the
nullspace. The identity block proves the linear independence of the columns. We can also show
explicitly that any element in the nullspace of A is in the span of N. This fact relies on the linear
independence of the columns of A’. Explicitly these two proofs are given by

LIN IND: Nszé[jfz]:[g}éxzo
/
SPAN: Az =0= A'[I B [f,,} =0

=2 =-Br' =2 = [_BI] (-2")

where the beginning the second line depends on the columns of A’ being linearly independent. We
illustrate writing the columns of A” in terms of the columns of A’ for A € R?*% in the figure XXX
below. Here

Lo B
AN = | A, Ay A A, | |P2 B :m
10 0
N
—_—— ——
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Figure 28: (Left) Linear dependent columns as linear combinations of linearly independent columns.
(Right) Constructing “coordinates of 0” from linearly dependent columns.

We note in this case, we are actually visualizing specific (non-zero) points in the domain that
map to 0. If we expand these out in the domain we get the points in these figure illustrated for a
matrix with one "extra" column A € R?*3

A o Co-domain R?
(coords of
L Ag the origin) &
—1
Aq |
: Bxn
Bn 1
Domain R3
#
3 (nullspace

elements)

Figure 29: Constructing a vector in the nullspace for A € R?*3. (Left) Coordinates of 0 mapping
to the origin in the co-domain. (Right) Those same coordinates shown in the domain.

and for a matrix with two extra columns A € R2x4,
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Figure 30: Constructing two nullspace vectors for A € R?*4. (Left) Coordinates of 0 mapping to
the origin in the co-domain. (Right) Those same coordinates shown in the domain.

Any linear combination of these vectors is also in the nullspace of A and thus the span of these
vectors is the nullspace as illustrated for A € R?*3 (a one dimensional nullspace)

Co-domain R?
(coords of
the origin)

Domain R3

(nullspace
elements)

39

Figure 31: Scaling the coordinates (in the domain) still results in a vector in the nullspace, ie. those
coordinates still map to the origin (in the co-domain).

and for A € R?*4 (a richer two dimensional nullspace example)
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Figure 32: Linear combinations of nullspace elements (in the domain) still results in a vector that
maps to the origin in the co-domain (though the path taken may be more complicated).

Note that in both cases, the element in the nullspace provide a way to move away from the
origin and then back to it along the directions given by the columns of A.

If one wishes, one could visualize pulling the columns of A back to the axes of the domain and
watching the point 0 expand (possibly in multiple directions) to points in the nullspace. There is
a variation of this expansion idea that can help us visualize nullspace but it is more natural in the
context of visualizing affine spaces below.

The nullspace constructions given above are critical for defining subspaces in general. Specifi-
cally, there are two natural ways to define a dimension k subspace of R™: one as the nullspace of a
rank k matrix A € R™*" and one as the range of a matrix N € R,

X:{xeRn

Aac:O}

X:{xER”

x =Nz, zERk}

For the two characterizations to be of the same subspace, we want to choose N as above to be a
basis for the nullspace of A.

4.4 Range of AT

The last and most difficult subspace that we will consider in reference to column geometry is the
span of the rows of the matrix, the range of AT. It is perhaps a surprising fact of matrix geometry
that while the algebraic relationship between columns and rows is quite simple, any geometric
relationships are much more subtle. We offer several perspectives here on how to "see" the rows via
the column geometry of a matrix. The authors would like to note this section is experimental and
they find it the least satisfactory in this paper.

4.4.1 Input Directions

Another option for row visualization is to note that each row defines an input direction that provides
the maximum gain in a particular coordinate of the co-domain. To be more specific, consider a unit

27



vector u in the domain, v € R™ and multiply v by a matrix A, Au.

- AT =1 1) ATy
Au = : u| = :
_ar | L AT

The ith coordinate of the output is given by le-Tu, the inner product between the ith row and wu.

The quantity fliTu is maximized when u = mﬁi, ie. when u points in the same direction as row
fliT. Note also that when this is the case,

=T AZTAl —

Aju= Al = [ Asl],

ie. /_liTu is the magnitude of row f_l;fp. This leads to the following visualization. Visualize the image
of the unit sphere (in the domain) via the column geometry. The direction (in the domain) that
gives the maximum output along each axis is the direction of that row. The gain along that axis is
the magnitude of the row. This illustrated for A € R?*2.

[\
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A Codomain R? N Domain RZ
Aug - Ty =LA,
P e o A=l
// A \ \\\\\ / L
’;, (| Azl A
\\\\ A ‘7‘( 1““ H——t+—+ “ + \\\\‘4 1 ettt i L L e 7\]\‘ by \“{ Pttt 1
\ ‘i Aul \ L /
/ _ 1 =
un =

e
\\ Hil

I R e e

This illustration separates the action of the row into it’s magnitude and direction. The direction
is shown in the domain, while the magnitude is shown in the codomain. Algebraically, this is
equivalent to separating A in the following way

- - 1 AT
~AT -7 QA - 0 ]| g
A=| =] : :
_ AT _ A __1 AT _
dg

We can illustrate the magnitude in the domain as well; however the method may be less than
satisfying. We do this by applying the stretching that moves the unit circle (in the domain) to
the matrix dg to each of the rows in the domain. This can be illustrated using similar triangles as
follows.
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Again, we note that this illustration is slightly unsatisfying in that the stretching is difficult to
visualize. For the remainder of the examples in this section, we will simply illustrate the unit vectors
in the domain (the directions of the rows) and magnitudes in the co-domain as in the first example
above. Perhaps an interested reader can provide a more elegant illustration. We now consider cases
where A is not square.

4.4.2 Input Directions - Tall Matrices

When A is a tall matrix the same illustration applies however the image of the domain unit circle
has lower dimension than the codomain. We illustrate this here for A € R3*2. Note that there
are three points on the 2D unit circle that maximize the distance along each separate axis in the
codomain R? that correspond to each row of the matrix.

\\\\\\1111111‘111111\\\\\\\\\]

[Zh
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4.4.3 Input Directions - Fat Matrices

For fat matrices, the domain unit circle has larger dimension and the action of the matrix collapses
one or more of those dimensions (the nullspace of A). Here the rows are the points on the unit
circle that maximize the gain in a particular direction and also do not contain a component in the
nullspace. We also illustrate this here for A € R?*3,

Codomain R2 Domain Rg 2

We can also visualize the nullspace in a similar manner to be the direction(s) on the unit sphere
that are do not show up in the image. Of course, these are orthogonal to the rows.

Codomain R? Domain R3 2

A i /L—;"'/

This visualization idea could also be relaxed to visualize how close u lines up to each column.
If the output f_liTu is far in the positive direction along axis

Another quite fruitful modification of this idea is to consider the subspaces orthogonal to each
row. The subspace orthogonal to the ith row of A is the pre-image of the set with 0 along the ith
axis (in the co-domain). This pre-image is illustrated here relative to the unit sphere in the domain
as well as the subspace containing it.
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4.5 Affine Spaces (Domain)

The nullspace discussion above extends to visualizing sets of the form
X:{xER" ’ Aa::b}

for A € R™*™ b e R™, and k < n. These type of sets can be more explicitly characterized using a
basis for the nullspace of A written as the columns of the matrix N € R®** using the form

X={zeR"|z=Nz+uz, z€R"}

where x( is a specific solution to the equation Az = b. Similar to the construction above, we can
find coordinates of b relative to the columns of A’ such that b = A’u in order to determine a specific
solution of the form zf = [uT O]T. Note that other specific solutions could be used by using
different columns of A as basis vectors or by using linear combinations of more than k vectors in
the matrix. We illustrate these possible solutions for A € R?*3. In general for a rank k matrix a
basis for the co-domain requires k columns. Assuming any set of & columns is linearly independent,
we can pair the first £k — 1 columns with any of the other n — k + 1 columns to form a basis. It
is not immediately obvious but specific solutions computed from bases of this form are sufficiently
rich to span all specific solutions (see Appendix XXX for further explanation and full proof). For
the 2 x 3 case given above, this reduces to two bases comprised of columns [Al Ag] and [Al Ag].
If we compute specific solutions for b with these bases we get two possible solutions z, 2’ € R3 of
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the form

T / [ /

:c:[xl To O] , =1x; 0 xg]T

such that Az = b and Az’ = b. These solutions are illustrated in the figure below.

b ° 1 b‘ 4
1 Af = b
T 4 15 v |:I1:|
T2
t A, O>
e 4
/ ‘ Domain R3

» o
Co-domain R2 LJ

The line between these two points can be defined as the set of points
{aac—l—o/a:’ ‘ a+ad = 1}

Algebraically, we can see easily that these points are also solutions to the affine equation given
above. Explicitly,

Alaz +d'2') = aAx + d’Ar' =ab+d'b=10

We illustrate this here

A
Ar =D
Ty
T2
0
>
- €y T )
0.5 |#z2| +0.5 |0 | = {ﬁlz}
0 T3 x4
Co-domain R? s {0} Domain R?
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Further more we can see that the difference between these two points (or any scalar multiple of
this difference) is in the nullspace of A. Again explicitly

Alz—2')=Az - A2 =b—-b=0

Comparing this picture with the nullspaces images above illustrate this fact.

Thus the picture that we have is that these two solutions define a 1D subspace (a line) all of
whose points satisfy the affine equation Az = b. We also have that vectors along the line are in the
nullspace of A. We now move to the case where A € R2*4. Here, we can form three separate bases
from the columns of [Al AQ], [Al Ag], and [Al A4]. The coordinates of b relative to these bases
are illustrated in the following figure as well as the three specific solutions
T

v = e 22007 & = [a1 004 0], o = [af 00 24",

Co-domain R?

Nullspace column geometry example for A € R?*4

Again as in the case above, any combination of these solutions with coefficients summing to one
is also a solution. The set

{a:n +ad2' + 2" ’ at+ad +d = 1}
is the 2D affine space shown in the figure. Again any point in this set is also a solution to Ax = b.

A(aw + oz + o/’ac”) = aAz + o Az’ + o' Ax”
=(a+d +a")b=b

Pairwise differences between the solutions (z — 2/, x — 2, etc.) can also be used to construct
elements in the nullspace and a basis for the direction spanned in the affine space.

Several proofs for the general case are given in the appendix.

In general, the affine space given can be characterized by a specific solution xy plus any element
in the nullspace. The solution zg can be chosen to be any of the elements given above. Often it is
chosen to be the minimum norm solution, This is computed as

zo = AT(AAT)"1p

This solution in general will use a linear combination of all the columns to construct b (all elements
of x will be non-zero). Whereas our previous specific solutions were chosen by selecting a basis and
then inverting that basis to find the specific solution from b, the minimum norm solution is chosen
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based on optimization principles to find the point on the affine space closest to the origin (as defined
by the 2-norm), ie.

zo = argmin ||z]|3 st. Az =1b
T

We illustrate this solution for A € R?>*4. Note the proximity to the origin of the point zg in
the domain. And also the relative size of the hypercube representation of the coordinates in the
co-domain picture.

The above constructions for affine spaces suggests several alternative method for visualizing
nullspaces via column geometry. If we pick any point b and envision different sets of coordinates
for b via the columns of A (say xz and z’ such that Ax = b and Az’ = b), then the difference
between these two points is a vector in the nullspace of A. The dimension of the nullspace is the
number of truly independent ways to construct coordinates for b. Note also that this construction
is independent of b and thus the choice of b does not matter. For an alternative more dynamic
visualization, we could think of pulling each column of A back to an axis in the domain. As we
pull, we start to see subspace of points that all expand out of the point b,ie. that would all map to
the point b though A. These directions form the nullspace of A. If there is only one vector in the
domain that maps to b then the nullspace is trivial (dimension 0).

The set of points is then the point zy plus any element in the nullspace. (Again we can envision
watching the point b expand out to this affine set as we drag the columns of A back to the axes of
R™ as shown in the inset.) We give several illustrations of this construction for different dimensions
shown below. It is worth considering these examples quite carefully as well as visualizing the
dimensions in the nullspace as degrees of freedom in choosing xg. This visualization is conceptually
complicated and worth noting how various aspects change as both b and the columns of A shift
position and andthe position of the columns of A and as

Visual Exercise: Vary the following:

e Position of b
e Position of columns of A

e Number of columns of A (dim n)
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5 Appendix

5.1 Rows - Parallel Axis Representation

The most basic and in some ways natural way to "see" the rows of the a matrix via the columns is
to note that the rows are represented in parallel on each axis in the space with elements given by
the appropriate projection of each vector onto that axis as illustrated here.

Row 2 2 RQ

A A
§ - S— 4, Az

The projection of an input vector onto each row of A can then be seen by using the hybrid
parallel-spatial representation of the inner product.

Row 2 2 RQ
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Actually, we can note that the overall column geometry picture is just using the hybrid geometry
inner product picture on both axes (rows) simultaneously. One visualization of the rows can be
created by simply continuing the expansion process from the previous figure and lining up each
coordinate with a new axis as visualized here.

While accurate, this method involves perhaps too much squinting and motion.

5.1.1 Left Multiplication

Left multiplication of A by B (of appropriate dimensions) transforms each individual column by
the same transformation (B). separately as illustrated here when B is a simple rotation matrix.

BA € R?*4 A € R4

We use a simple visual example for B (a rotation) to clearly illustrate that the transformation
is applied to each column of A, but of course more complicated transformations of B would work.

Remark 5. For a complicated matrix B, it’s probably easiest to understand how it transforms A
by thinking of how columns of A are represented relative to B, ie. thinking about B being right
multiplied by A. Of course this is fine and whether the product BA is seen as A left multiplied by
B or B right multiplied by A is simply interpretation.

5.2 Pre-Image of Co-Domain Subspaces

While perhaps slightly more complicated, it is also very useful to visualize the pre-image of co-
domain subspaces in the domain. We note that this will be especially useful for eventually discussing
polytopes.
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