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Abstract—This tutorial paper gives basic visualizations
for real matrices in R?>*? wih a primary focus on col-
umn geometry. Basic notation and basic column and row
geometry are given followed by visualizations of several
basic types of matrices. Matrix multiplication is dis-
cussed. Transposes and inverses are discussed with a focus
on symmetric/skew-symmetric matrices and visualization.
Similarity transforms and eigenvalue decompositions are
discussed. Explicit algebraic characterization of eigenval-
ues/eigenvectors along with thorough visualizations. Special
attention is then given to complex eigenvalues/eigenvectors
including a discussion of rotation matrices. Symmetric and
definite matrices are discussed in the context of quadratic
forms. Grammians (shape matrices) are discussed; polar
decompositions are derived and discussed, and the singular
value decomposition is discussed in detail with analogies
drawn from complex numbers. The final section of the
paper details linear vector fields. The spectral mapping
theorem and the matrix exponential are discussed along
with stability criteria in continuous and discrete time.

I. INTRODUCTION

Real matrices in R?*2 show up in every corner
of modern mathematics. Beyond being useful in their
own right, they also provide foundational examples and
intuition for studying invertible linear maps (square
matrices) in general. In this paper, we give many detailed
visualizations of basic structural results about R?*2,

The initial section covers basic notation as well as
gives basic details of column and row geometry and the
image of sets under 2 x 2 linear transformations. Our
analysis in this paper will focus primarily on column
geometry as it is the most natural but row geometry
will be discussed as well at several points. Matrix
multiplication is discussed briefly as well. We next detail
the structure of several basic classes of square 2 x 2
matrix structures including diagonal, upper/lower trian-
gular, symmetric/skew-symmetric, rotations/reflections,
and nilpotent structures. This section is meant to give
a general flavor and build basic spatial intuition.

The next section discusses the geometry of the matrix
transpose, ie. the geometry of the rows relative to the
columns. While algebraically immediate, this geometry
is actually fairly subtle. Particular attention is given
to the symmetric and skew-symmetric portions of the
matrix. Inverses are then discussed. Whereas transpose

are algebraically simple and geometrically complicated,
inverses have the opposite flavor (geometrically simple
but algebraically complicated).

We then turn our attention to the rich subject of sim-
ilarity transformations and eigenvalue decompositions.
Similarity transforms are visualized with specific atten-
tion given to orthonormal similarity transforms (similar-
ity transforms that are also congruent). The characteristic
polynomial and it’s relation to eigenvalues and left/right
eigenvectors is thoroughly visualized and discussed.
Formulas for eigenvalues, eigenvectors, and diagonal-
izations are given. Special attention is given to the
complex eigenvalue case and pseudo-diagonal/rotational
forms of complex eigenvalue decompositions. We also
include a discussion of repeated eigenvalues, Jordan
form, and nilpotent matrices. We then present in detail
how eigenvalues and both left/right eigenvectors relate
to the column geometry of a matrix in the both the
real and complex eigenvalues cases. These particular
visualizations are detailed and extensive. The complex
case is then expanded further to detail it’s rotational
structure and specific attention is given to true rota-
tion/reflection matrices. We also give specific attention
to skew-symmetric matrices as real matrices with purely
imaginary eigenvalues. Finally, we conclude the initial
eigen-decomposition discussion with a brief discussion
of the spectral mapping theorem. We next turn our at-
tention to symmetric matrices in the context of quadratic
forms. Quadratic form surfaces and their relationships to
symmetric matrix eigenstructure is discussed. Positive-
definite, negative-definite, and indefinite matrices are
discussed.

The next section of the paper contains a detailed
discussion of matrix shapes including the polar de-
composition and singular value decomposition. The two
Gramian matrices and, more importantly, their square
roots, are discussed as the primary two definitions of
matrix’s positive definite “shape”. From there we derive
and visualize the polar decomposition in both contexts.
Finally, we use the eigen-structure of the Gramian
matrices to give the singular value decomposition (the
classical construction) and give visualizations. Detailed
connections between each of these decompositions as
well as the sym/skew-sym decomposition are given as a



thorough discussion of analogies with complex numbers
in their Cartesian and polar form.

The final section of this paper details the structure of
linear vector fields (ordinary differential equations) in the
linear time invariant case. Basic solutions in the form of
the matrix exponential in continuous and discrete time
are given. The relationship between eigen-structure and
trajectories is detailed. Stability criteria in both continous
and discrete time are given in terms of eigenvalues as
well as various parametric tests for stability. Some of
these are classical results while others are somewhat
novel.

Remark 1. The primary section missing from this paper
is perhaps one focusing on matrix commutators. The
authors hope to add this section at some point in the
future.

A. Prerequisites and Follow-ups

The authors have created an interactive tool for ex-
ploring the geometries in this paper presented here:

https://danjcalderone.github.io/dcmath/linalg/2x2visualizer.html

It can be read on it’s own without much difficulty;
however it does assume a familiarity with the notation
and vector/matrix visualization techniques presented in
the following monographs.
e Vector visualizations:
https://danjcalderone.github.io/papers/vectors.pdf
¢ Column geometry:
https://danjcalderone.github.io/papers/columns.pdf
This paper is also meant to be part one of a three
part series. The second paper expands many of these
results/visualizations to real matrices in R?*3; the third
paper discusses extensions to general matrices in R™*"
with visualizations given in R**#, This last paper is
(of course) far less thorough since the space R™*"™
is a vast mathematical landscape that has never been
fully explored. Any “thorough” discussion would have
to include countless specific types of matrices. The
visualizations in this last paper are also only meant to be
experimental and to give a flavor for how an ambitious
student of visualization might seek to extend the the
visualization techniques in the first two papers to higher
dimensional geometries. As such, they should only be
viewed in parallel to the first two monographs. The
authors also take no responsibility for any confusion that
may result from viewing them. The dissatisfied reader is
always heartily encouraged to make improvements or re-
fall in love with pure algebraic insight. !
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II. BAsic COLUMN GEOMETRY

The columns of a matrix A € R™*™ are vectors in the
co-domain of the linear map. For a matrix A € R2*2,
we can split the matrix into two columns or two rows
depending on context.

I
A= 1|4 A
.

Each individual column A; € R? tells where the jth
standard basis vector (in the domain) gets mapped under
the transformation. Explicitly Al; = A;. We can see
where a vector x € R” in the domain gets mapped by
breaking up x into a linear combination of standard basis
vectors (ie. x = Iz + -+ + I,x,), transforming each
standard basis vector to the appropriate column, and then
recombining. Algebraically, this is given by
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This column geometry picture can be applied to sets
of vectors at a time to see their image through the map
in the codomain. This can be quite useful in getting a
sense for how a linear map distorts the space. Images:


https://danjcalderone.github.io/dcmath/linalg/2x2visualizer.html
https://danjcalderone.github.io/papers/vectors.pdf
https://danjcalderone.github.io/papers/columns.pdf

III. MATRIX MULTIPLICATION & INVERSES

It can also be used to visualize composition of matrix
matrices. For matrix product AB, drawing the columns
of B relative to A (as the new axes) gives the columns
of AB in the codomain of the composition map. We
give an illustration here where B is rotation matrix to
illustrate the feel for this geometry.

This technique is also surprisingly useful for illustrat-
ing the columns of a matrix inverse. A matrix inverse is
the matrix B such that AB maps to the identity. For any
2 x 2 matrix this can be read off fairly quickly simply by
drawing the columns of A as illustrated in this image.
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For the sake of completeness, we also include the
algebraic formula for the inverse here.

A= detl(A) [—dc _ab}

A few more comments about inverses are detailed in the
section.

IV. MATRIX TYPES

To get a further feel for matrix column geometry, we
briefly illustrate the columns of several specific types
of matrices. This list is not meant to be exhaustive
and the reader is strongly encouraged to explore other
matrix types of interest via the column geometry picture.
(This idea is even richer for matrices larger than 2 x 2
with many more types of matrices creating interesting
geometries).

Symmetric Skew-symmetric




V. M HPK DECOMPOSITION

The matrix A can be decomposed as
A— {m +h p-— k]

p+k m—h
where
m=3(a+d), h=3(a—d),
p=30b+c), k=h=1(c—b)

Note that here m and p are the averages of the
diagonal and off-diagonal elements (respectively) and h
and k are the differences. This mhpk-parametrization
is particularly useful for considering limiting cases or
special types of matrices. We detail some of these in the
image below. Only m # 0 is a scaled identity matrix;
m, h,p # 0 is symmetric. only k # 0 is skew symmetric;
only m, k # 0 is a scaled rotation; h, p # 0 is symmetric
with zero trace. Other interesting categories of 2 x 2
matrices such as m,p # 0 (Symmetric matrices with
constant diagonal) or h, k # 0 (a zero-trace matrix) that
has some rotation like properties could be considered as
well.

We comment also that this parametrization suggests
several matrix decompositions. Specifically, we will con-

sider . L
_|m - p
S (i
—_— Y
M H

Often it will be useful to enumerate the columns of each
as well.

We compute the norms of u and v as they will show
up repeatedly in what follows.

fu = g || = | = V/m? + 2
o] = flos ]| = [lo— ]| = v/p? + A2

More propositions about M and H are given in the
eigenvalue decomposition section, the singular value
decomposition section and also the appendices.

This decomposition will prove surprisingly useful in
illuminating the geometry of both the EVD and SVD of
a 2 x 2. Much of the inspiration for this direction comes
from noting the following formulas for the trace, de-
terminant, and discriminant (A) (from the characteristic
polynomial) of the matrix.

%tr(A) =m
det(A) = ad — be

= (m+h)(m—h) = (p+k)(p— k)
:m2+k27h27p2

2
\/Zz\/("(;”) — det(A)
:\/m2f(m2+k27h27p2)
— /h2+p2—k2

We can write the determinant and discriminant formu-
las in terms of the columns of M and H as well.

det(A) = |uf® —[v]?
VA = /|v]2 — k2

Finally, we return the matrix inverse formula and write
it in the mhpk coordinates.

1 d -b| 1 m—h —p+k

det(A) |—¢ a det(A) |-p—k m+h

It is interesting to note that (along with scaling by the

determinant) the matrix inverse operation negates h,p,
and k, but leaves m untouched.

VI. SYM-SKEW DECOMPOSITION & TRANSPOSES

We note that the above M — H decomposition is
different from the more traditional symmetric/skew-
symmetric decomposition of a matrix. Expressed here
in the mhpk coordinates, the symmetric/skew-symmetric
decomposition is given by

A=A+ AT)+3(A-AT)

S K
_|m+h Py 0 —k
) m—h E 0

—_— ~—
S K

The primary difference is whether or not the component
ml is combined with the k& term or the h,p terms. We



can illustrate the column geometry of this decomposition
as follows.

The symmetric and skew-symmetric parts of a matrix
act in many ways like the real and imaginary parts of a
complex number and the symmetric/skew-symmetric de-
composition is analogous to the cartesian representation

Complex Number: z=_a +_bi
~— =~
Real Imag
Matrix: A= S + K
~— —~—
Sym Skew-Sym

This analogy is rich and subtle but also not as complete
as one might hope given the fact that multiplying by a
matrix can be much more complicated than multiplying
by a complex number. Symmetric matrices have real
eigenvalues; skew-symmetric matrices have imaginary
eigenvalues. Symmetric matrices represent pure stretch-
ings; skew-symmetric matrices represent pure rotations.
But in general, the eigenvalues of the full matrix are
not the eigenvalues of the symmetric part plus the
eigenvalues of the skew symmetric part and adding any
component bi to a real number makes it complex, but
a matrix with a non-zero skew-symmetric part can still
have only real eigenvalues.

Mathematically, the complications arise from the fact
that in general the symmetric and skew-symmetric parts
don’t commute. In the 2 x 2 case, K commutes with mJ
but anti-commutes with .

mIK = Kml, KH=-HK

From this we get, that the complex number analogy is
very strong when H = (. Indeed in this case, we have
simply

A= M- [m k]

kK m

and as a scaled rotation M has eigenvalues of m =+ ks.
mlI represents a pure scaling; the addition of a non-
zero H changes the shape of the stretching done by the
symmetric part of A and thus breaks the tight analogy.
More details on these ideas are given in the eigenvalue

section and more analogies with complex numbers are
explored in the sections on polar decomposition and
SVD.

The mhpk coordinates do provide an interesting geo-
metric perspective on the transpose operation. The trans-
pose can be obtained by negating the skew-symmetric
part of the matrix

AT =S§-K

which amounts to simply negating the k term which we
illustrate here.

VII. EIGENVALUE DECOMPOSITION

The characteristic polynomial of the matrix is given
by
xa(s) = 52 — tr(A) + det(A)
= 5% — (a+d)s+ (ad — be)
Note in the mhpk-parametrization this becomes

xa(s) = 8% —2ms +m? — h? — p? + k2

A. FEigenvalues

The eigenvalues are then given by the roots of the
characteristic polynomial which in this case can be
computed using the quadratic equation.

2
A2 = Lr(A) = ¢ (%) — det(A)

Mo = 5t 0/ (559)° — ad — be

)\1}2 =m=*
=m+A

with A = \/h? + p? — k2
This last formula specifically gives us some direct
insight into the structure of the eigenvalues. First, the

B2 + p2 — k2



two eigenvalues are centered around m which is the trace
divided by 2 or the arithmetic mean of the diagonal.
(This actually extends to the n x n; the arithmetic mean
of the diagonal (ie. tr(A)/n) is the centroid of the
eigenvalues.) Secondly, the geometry of the vectors

m +h
U+ = 4k V4 = P )

tell us a lot about the matrix and it’s eigenvalues. For a

symmetric matrix (k = 0 ) the eigenvalues are given by
A2 =m=Eh2+p2=m=|v]

In this case, the definitiness of the matrix is determined
by the relative size of m with the norm of v. A symmetric
2 x 2 matrix is definite if and only if

[m| > o

Positive or negative definite depends on the sign of m.
The discrimant is given by

p2—|—h2—k2:|v|2—k2
A has real eigenvalues if and only if
k| < [v]
If p = h = 0, then the eigenvalues are given by

Ao =m = ki=+/m2+ k2e*%

with ¢ = tan™! (%) where the second equality gives
the polar form. This last characterization shows a close
relationship between a matrix of the form

A= {TIZ n”]:] el _“’Z}?W]
M2+ k2 M2 k2
_ /3 2 |cos(¢) —sin(9)
= vm? +k? Lin((é) cos (o) }

and the complex conjugate pair m =+ ki. Indeed much of
the intuition behind complex eigenvalues is grounded in
understanding matrices of this form. Note that the last
two equalites write the matrix as a scaled rotation closely
related to the polar form of the eigenvalues. More uses
for these formulas are detailed in the section on linear
vector fields and stability.

B. Eigenvectors

While the above eigenvalue analysis is insightful, we
must also consider the eigenvectors in order to get a
full picture of the action of a matrix. We will discuss
primarily discuss right eigenvectors here, but analogous
results apply to left eigenvectors as well. Since the length
of an eigenvector is irrelevant, we will present formulas

for eigenvectors with the understanding that any scaling
of that vector is also an eigenvector. To explicit, we will
use =2 to represent proportional to.
For an eigenvalue ), the right eigenvector is contained
in the nullspace of
A—a —b
a-a= P

Row-reducing this matrix gives

] SN I Ny =

b
1 —x—a
0 0

where the last equation is from A being a root of the
characteristic polynomial. We then have the following
two characterizations of a right eigenvector for \.

b Vo e—d
a2 =[]

The first characterization here comes from the row
reduction done above (where the 1,1 entry of the matrix
is taken as the pivot); the second characterization comes
from if the 2,2 entry of the matrix is taken as the
pivot. We note also that each of these vectors is clearly
orthogonal to one of the rows of the matrix above Since
in a rank-1 2 X 2 matrix the rows are just scalings of each
other, being orthogonal to one row is the same as being
orthogonal to other other so we could have have just read
off both of these characterizations initially. (Again, note
that this rank-1 condition (and thus the above eigenvector
characterization) is not true for all A but only when A
satisfies the characteristic equation.)

Along with picking vectors orthogonal to both (in
this case, either) row, there is another way to read
off eigenvectors based on diagonalizing A\l — A. If we
diagonalize A\l — A we get

N

A—a —b
M_A:[—c )\—d}
| T
_ A=\ 0 - wr -
- ‘? ‘|/2 [ 0 A—AQ] [— Wy —}
—_——
y—1



If we plug in A, then the second matrix term in the sum
goes to 0 and we get that both columns of the resulting
matrix are actually scalings of V;. Similarly if we plug
in A1, then the columns become scalings of V5 From this

we have that
—b
Ao —d

~ )\1 —al —b
el
Note here that the of the eigenvalues/eigenvectors is
opposite as opposed to above where it was the same.
Note again that the lengths of of the eigenvectors (for
each eigenvalue) here are not the same and one would
need to work a little harder to show how they differ.
Again each of these different subspace characterizations
is only the same because A is a root of the characteristic
polynomial. Any attempt to show that these vectors
have the same span will involve using the fact that
(A —a)(A—d) — cb = 0. The rank of A\I — A dropping
and it’s relationship to the eigenvectors is given in the
following illustration
Plugging in the eigenvalues for A to the above forms
gives several specific characterizations.

1

e ]

—C

and that

~ b _|p—k 0
V1’2_ |:)\1,2—CL:| - |: —h :| + {m}

Vi o )\172—(1 _ h p? + h2 — k2
1,2 = c T p+k 0
v [lemal _[ b | [V R =R
1= e | |tk | 0 |
vie| T [-e-R)) 0 |
YT —d | R /D2 + h2 — k2]
JA=al [ =R ] [VREHp2— K2
L R e ) B A
~Y [ 7b ] J— _7(p7k)_ [ 0 ]
L PV el I A IR N/ oy )

We should note that m does not appear in any of the
formulas. The reason for this is that m gets added to
both diagonal elements equally and thus provides the
component of A strictly proportional to the identity.

. 1 0 h p—k
A_mk J+L+k h]

Thus for any value of m the matrix has the same
eigenvectors. Since adding a scaling of the identity shifts
the eigenvalues but does not change the eigenvectors this
is to be expected.

C. Eigen-Structure Visualizations

We now suggest a way to visualize the eigenstructure
related to the column geometry of a 2 x 2 matrix. This
visualization is quite dense and so we will build it up in
stages.

We first look at the case where both eigenvalues are
real.

radius
A =m+4d

radius
dAo=m-—§

radius

A =m+4

radius
Ap=m-—4§
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For a symmetric matrix, there some interesting ex-
tensions. If we consider the image of the unit cir-
cle, we notice that the resulting ellipse elegantly in-
scribes/circumscribes the two eigenvalue balls and also
that the the eigenvectors are orthogonal to each other.

VIII. COMPLEX EIGENVALUES

Rotation shape
Rotation angle

One of the fundamental linear operations one can
perform on a vector space is a rotation. The question
of eigenstructure for rotational matrices requires use of
complex numbers since complex numbers were in some
sense specifically created to capture a notion of rotation
within scalar multiplication.

Remark 2. [t is interesting to note that the origin of i as

the square root of —1 fundamentally contains this notion
of rotation. Multiplication by -1 flips a positive number
from the positive side of the number line to the negative
side. Multiplication by \/—1 should flip halfway from
positive to negative which naturally becomes rotation by
90 degrees “out” of the number line. The rest of complex
analysis is making this notion precise and complete.

Here the center matrix R is a rotation scaled by
Va2 4+ B2 If P is simply the identity than this is
a purely circular rotation. A similarity transform y P
allows us to distort the rotation ellipse to represent more
complicated rotational shapes as illustrated here.

The relationship between this rotational structure and
complex numbers can be seen by considering a simple
complex matrix U € C2*2 and it’s inverse.

L1 R
U:ﬁ[z‘ —2}’ v :U:ﬁL z}
The columns of U are eigenvectors of a 2 X 2 rotation
matrix. (They are not unique eigenvectors but we will
discuss that more later.) Note that the first coordinate of
the columns are a constant real number and the second
coordinates are conjugate imaginary numbers. One can
check also that this matrix is unitary meaning UU* =
U*U = I. We now stick the product I = UU™ in the

expansion shown above.

A=PUU*RUU*P!

f it 20

— 1 1 £
P V2 V2 V2
1 —i|l |- p -

L AE v

e ol ol s T

N—— D
Q

What we done here is diagonalize R by computing
U*RU and then also computing the right eigenvectors
Q = PU and the left eigenvectors Q! = U*P~ L
There are several things to note here about both the
eigenvalues and eigenvectors.



The eigenvalues \; o = « £ (i are conjugate pairs
as expected. The magnitudes |\1| = [X2| = /a2 + 32
are the overall stretching. The phase arctan((/«) is the
angle of rotation. The real and imaginary parts of the
right and left eigenvectors are defined by p,q and p’, ¢’
respectively. One should also carefully note where the
plus and minus signs are in Q,Q,”! and D.

Remark 3. The rotational structure outlined above is
fundamental to rotations in higher dimensions as well. To
embed a 2D rotation in a higher dimensional space we
simply make p,q and p',q' have higher dimensions. p, q
defines a basis for the plane of rotation and p', ¢’ projects
input vectors into the relative coordinates within the 2D
plane. We illustrate this here in 3D. General rotations in
higher dimensions are composed of multiple 2D rotations
in different planes. To compute a particular plane of
rotation one can simply compute the right eigenvectors
for any two conjugate pair eigenvectors. The real and
imaginary parts then define the plane of rotation.

We note taht

i

At =m+ i

Ao =m — i

R R

IX. ROTATION MATRICES
X. DEFINITE MATRICES

Quadratic forms
Eigenvectors (orthonormal)
Eigenvalues (real)
Positive, Negative, Indefinite

XI. MATRIX SHAPES
A. Grammians

When studying matrix properties, there are two pos-
itive definite matrices known as Grammians that show
up frequently,

ATAeR™™  AAT e R

for A € R™*", AT A naturally arises, for example,
when computing the 2-norm of a vector under a linear
transformation. For y = Az, Ty defines a quadratic



form with matrix AT A; yTy = zTAT Az. . It’s inter-
esting to note that these matrices are well-defined even
when A is not square and that they also have the same
rank as A. This comes from the rank-nullity theorem
and the fact that Az = 0 clearly implies AT Az = 0
and also that ATAr = 0 = 2TATAx = |Az]? =0
which by properties of norms can only be 0 if Az = 0.
Similarly AAT has the same rank as A7 (and thus A).
These matrices often show up in pseudo-inverse formulas
because even if A is not square if A is full row rank
than AA7 is invertible and if A is full column rank than
AT A is invertible. Indeed, the most common left and
right pseudo-inverses are given by

Al = (ATA)TTAT, AR = AAAT)!

It should also be noted that AT A and AA”T are both
symmetric and positive semi-definite since 7 AT Ax =
|Az|? = 0 and norms are always positive. If A is full row
rank than AAT is positive definite; if A is full column
rank than AT A is positive definite.

For 2 x 2 matrices, we can visualize the column
geometry of the matrices using the matrix transpose
and matrix multiplication techniques detailed above;
however, it is not clear that these visualizations are easy
enough to see to be useful.

(In some ways these visualizations are best used only as
a supplement to the visualizations in the next section.)

B. Shape Matrices

Interestingly, the values of AT A are only determined
by the relative orientation and size of the columns from
each other and the values of AA” are only determined by
the relative orientation and size of the rows. Explicitly,
we can see that

oar
! | |
AT A = : Ay - Ap
AT _ | |
rATA; .- AlTAn]
LAT A, AT A,

the entries of A7 A just depend on pairwise inner pro-
ducsts of the columns (and similarly with AA” and the
rows.) We can see this more compactly by considering
applying a rotation R € R™*" to each column of A and
noticing that AT A is unchanged.

(RA)T(RA) = ATRTRA = AT A
Even more fundamental perhaps than A7 A and AAT
are the matrix square roots of these matrices

1 1
(ATA)§ ERan (AAT)§ ERme

Here we choose the positive root of the eigenvalues
to make these matrices positive definite. Note that any
matrix square roots have the property that squaring them
returns the original matrix (as was to be expected).

1 1

(A 4)
(4A7)

AT A = (AT A)
AAT = (AAT)

Nl= N
N N

1
We can refer to gATA)i as the “shape of the

columns” and (AAT)2 as the “shape of the rows.” By
”shape of the columns,” we mean the unique positive
semi-definite matrix whose columns have the same rel-
ative shape as the columns of A. The inspiration for
this comes from the relative geometry of the columns
discussed above but we can explicitly check this (at least
in the case where A7 A is invertible) by writing
A= A(ATA)"3 (AT A)3

—_——
R

We can then show explicitly that R is an isometry, ie.
RTR=1.

1 1
RTR=(ATA) 2ATAATA) 2 =1
Similarly, we could write

T\% V-2
A=(AA")2 (AA") 2A
R/
and show that R’ is an isometry to show that the rows of

(AAT)% are isometric to the rows of A. (It turns out for
invertible A that R = R’ but this is not at all obvious.)

These two formulas we have just derived are known
as the two polar decompositions of A, one based on the
column shape, one based on the row shape.

1 1

A= A(ATA) 2 (AT A)2
h

ortho.
1 1

A= (AAT)2 (AAT) 24

def.

pos. def.

pos.def.

ortho.



The above visualizations for AT A and AAT become
more enlightening if we now add the matrices (AT A)2

1
and (AAT)2. We also draw the orthonormal transfor-
mations R and R’. The reader should note that rotating

1

the columns of (AT A)2 by R moves them to A and
1

squaring (AT A)2 moves it to AT A.

1
Similarly, right multiplying (AA7)2 by R’ transforms
it to A and squaring it transforms it to AA” .

(DISCUSSION OF POLAR FORM ANALOGY
WITH COMPLEX NUMBERS)

The polar decompositions are precursors to the singu-
lar value decomposition in that the SVD is derived by
diagonalizing AT A or AAT. After deriving the SVD,
however, it is worth plugging the SVD matrices back
into the polar decomposition formulas. We do this here
(before discussing the SVD in detail for readablility).
For an invertible A € R™*"™. For SVD given by

A=UxVvT
The Grammians are given by
ATA=vx2yT, AAT = UuxtuT

The shape matrices are given by

1 1
(ATA)2 =vevT, (AATY2 =UxU”T

The polar decompositions are given by

1
A=R(ATA)2 = (UVT)(VvEVT)
N——
ortho. pos.def.
1 1
A= (AAT2R = (UxUT)2 (UVT)
N —— N —

pos.def. ortho

11

We note from this last set of formulas that R = R’ =
UVT and also that AT A and AA” have the same non-
zero eigenvalues.

For 2 x 2 matrices, we can the Grammian matrices
in terms of the M,H decomposition. This will prove
specifically useful when we diagonalize A7 A and AAT
in order to write explicit formulas for the shape matrices
(ATA)2 and (AAT)2 and the singular value matrices
U,%,V in terms of m,h,p,k (and then by proxy in
terms of a,b,c,d). To this end we first give a propo-
sition about M and H that can be checked by direct
computation.

Proposition 1.

MH=HMY, HM=M"H

1 1
Similar proofs apply to H2 and M?2.

We then have that

ATA=(M" + HT)(M + H)
=M"M+H"H+H "M+ M"H
= (lul*+v]*) I +2HM

AAT = (M + H)(MT + HT)
=MM" + HHT + HMT + MH
= (lu]*+v[*)I +2MH

where we’ve used the proposition above and also that
the columns of M and H are orthogonal to each other.

XII. SINGULAR VALUE DECOMPOSITION

The construction of the singular value decomposition
proceeds by diagonalizing one of the Grammian matri-
ces. We will show one such derivation here for invertible
A. Diagonalize AT A as

ATA=vx2v7T

for orthonormal V and positive diagonal ¥2. Another
way to write this equation is that ATAV = VX2
These assumptions are valid since AT A is symmetric
positive (semi-)definite. We now notice that the columns
of AVY~1! are orthonormal eigenvectors of AAT with
eigenvalues given by the diagonal of ¥.2. Indeed

AAT(AVE~1) = AAT AV~
=AVE?2~l = (AaveHx?



To check orthonormality, we check that
SIVTATAVS T =iy eie Tl =T
Define U = AVYX~! and rearrange to get
A=UxvT

Here U,V orthonormal eigenvectors of AAT and AT A
and ¥ diagonal with elements that are the square roots
of the eigenvalues of the same.

From above we have that

ATA = (Jul® + o) I +2HM
AAT = (Ju? + o|*)I +2MH

We can see from these computations that the (trace-
zero matrices) M H and H M determine the eigenstruc-
ture of AT A and AAT and thus the singular structure
of A.

A. Singular Values

The singular values are the eigenvalues of M H and
H M shifted by |u|? + |v|?. We now write out M H and
HM explicitly.

MH— |™ —k||h p| |mh—pk mp+kh
|k m||p —-h| |mp+kh —mh+pk
_|h p||m —k| |mh+kp mp—Ekh

HM = [p —h} {kz m} o {mp—kh —mh—kp]

We can compute that the eigenvalues of M H and H M
are given by

M2(MH) = ++/(mh — kp)2 + (mp + hk)?
- j:\/mQhQ + k2p2? + m2p? + h2k?
= +v/(m? )12 1 1)
= fuv]

M2(HM) = ++/(mh + kp)2 + (mp — hk)?
_ j:\/m2h2 + k2p? + m2p? + h2k?
= £/ + ) (17 + 1?)
= fuv]

Note these eigenvalues are the same as expected from
the fact that A7 A and AAT have the same eigenvalues.
We then have that the eigenvalues of A7 A and AA” are
given by

Ma(ATA) = Ao (AAT) = [uf® + [v]? £ 2[ulJv|
= (Jul £ [v])
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Finally we then have that the singular values of A are
given by

o1z = |[ul v

= |Vmr e |

We note this formula is remarkably elegant and clean and
geometrically can be seen from the column geometry of
M and H. The smaller singular value defines the circle
defined by the difference in length of the columns of
M and H and the larger singular values is defined by
the added lengths. We can also see how this relates to
the notion of the two singular values being the minimum
and maximum gain of a vector by considering the image
of the unit circle under transformation A (also shown in
grey). The maximum length of a unit vector transformed
through A reaches the outer circle and the minimum
length touches the inner circle. We will discuss the
maximum input and output directions in more detail after
deriving formulas for the singulara vectors

AO)
( )
<IN/

B. Singular Vectors

We now turn our attention to the singular vectors,
1
ie. the eigenvectors of AAT, (AAT)2 and of AT A,

(AT A) % The most direct path forward is to consider the
eigenstructures of M H and HM. We include a longer
derivation of the singular vectors following this method
in the appendix. Here, however, we give a quite simple
derivation that is much easier to follow though definitely
harder to find.

Our proof comes from direct analysis of M and H
which we reproduce here for clarity.

m
k

—k _|hop
N 1

Here we’ve decomposed A into two orthogonal ma-
trices, M and H.

|



We first analyze the structure of M and note that it’s

a scaled rotation. fact about 2 x 2 rotations that can be checked directly.

[ deeid R F |

-1 0 -1
SVD directly.

cos ¢

sin ¢

—sin¢
cos ¢

Proposition 2 (M: Scaled Rotation).

[ }—H[ ]—H[

with ¢ = arctan(k/m)

The matrix square root of a scaled rotation is easy to
compute since it one simply takes the root of the scaling
and the rotation matrix with half the angle.

cos ¢

m

k

cos ¢
sin ¢

—sin¢
cos ¢

[l Iu\

|

[l IU\

Ry

A=M+H
1 0
~ iR+ biRe [y °]

i 1 0
Proposition 3. = [u|Ry 2Ry 2 + V| Ry /2 {0 J RWQ

1 .
[m 7k:|2: Tul cos§ 7sm¢% :‘U|R¢/2R¢/2R5/2R¢/2+
k m sini cos 5 1 0 .
—_—
D (0] Ry /o R 2 {0 _1} Ry/2Ry o
- 1 \/\u|—|—m —\/|u\—m] 1 0
=i 35 [ViEn i = [uUVT + [oU {0 _J VT
Ry /o
ozl o Tvr
0 lul = |v]

Proof: Direct computation. Explicitly:

1 1

12M32 = é Ve “f'ﬂ'i =] [ ul £ —ul ] where U and V' are the two rotations.
! (FuT m)(Tal =m) B
= 3 bvmre = ] cos M) —sin (qu
1 —2yful® — 2 U=Roryp =RopRyp=1| 0,0, P
2 2\/|u|2 m?2 2m 2 _bln D) COS (7
[ m —y/m?2 + k2 — m?2
\ym?2 + k2 — m?2 m cos v— ¢) _ bln ( ¢
ol E— V=Ry_ 4 =R, Ryn=
2 #/2 sin (452 ¢> cos (—¢2¢)
| | L

Here U is the rotation caused by the average of the two
phase angles ¢ and 1 and V is the rotation caused by
the offset phase and their columns define the singular
vectors. This formula given above is basically the SVD
except when the case where |v| > |u|. Here we simply

Second, we analyze the structure of the symmetric
zero-trace matrix H by taking it’s diagonalization. H is
a scaled reflection.

Proposition 4 (H: Diagonalization).

ho p]_|cosL —sin¥|[lo] 0 cos? sin%| multiply the second column of U (or V) by —1 and
{p *h} B Lin2 cos ¥ } {0 *\v\} {— sin 2 cos 5;} replace |u| — |v| with |Ju| — |v]].
Ry = In general then, we can take
. S
il 2= "5 )
Ry/s = [Cf’s% - Sin})} _1 [V |v] + h =Vl =h and use the formulas for U and V' given above with the
sing  cos§ N |v| — [v| +h

understanding that we flip the sign on one column of
U or V if needed (when |v]| > |u|). We can also write
more explicit representations of U and V. Define angles
¢ and 1) given by

¢ = arctan (Z) , 1 = arctan (%)

and ¥ = arctan(p/h)

Proof: Note that H can be written as
1 0
H = |U|R¢ l:O _1:|
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sin ¢
—sing cos¢

|
Together, these two structural allow us to construct the

The result follows directly from the following simple

|




Here ¢ is the rotation angle of u up from the first axis
and 1 is the rotation of v from the first axis. For any
angle 6 let Ry denote a rotation matrix by 6 . Note that

i3 7T _h_ _ _ b
SN IV Al (| N N 1 .
2 1— 1+ & 2 1 _h 14 b
Tu u To] Tol

Ry /2 Ry /2
h T T m 14+ 1 R
V= \11;7\1 \#L\ o [l [v]
[ p—1n T+ h h
2 Tul + 1] V2| /1 - o 1

rT
b/2 LA

C. Explicit Formulas for Polar Decomposition

These derivations can be applied to the polar decom-
position matrices to acquire specific formulas for them
as well. The Grammian matrices A7 A and AAT are
quite easy to write explicitly. The polar rotation can be

constructed as
m  _k
— | lul [ul
k_ m
[ul [ul

Perhaps surprisingly, this is just M with normalized

cos ¢

. . —sing
UV' =Ry = [singb }

Cos ¢

1
columns. To construct the shape matrices (A7 A)2 and

(AAT)% we first give the following lemma that details
2 x 2 symmetric matrix structure. For a diagonalizable
symmetric 2 X 2 matrix with eigenvectors defined by the
columns of rotation matrix R we have

Lemma 1. Symmetric matrix structure

_|cp —s¢| |a O |chd s
ror =[5 6 51 ¥

_|ep —s¢| |a+ B 0 cp  so
T s <o 0 a—pB||—sp cp
|10 29  s52¢
_a[o 1} +5 [s2q§ —czqs}
Appl}lzing this lemma to (ATA)% = VXVT and
(AAT)2 = USUT gives us
T 2 _ T _ c(=0) s@@-9)
it =vevT =ar s [(ETE Y
TV: _ T _ c(p+v) S(¢+¢)}
(AAT)3 = USU aI+BL(¢+w) BNARG

o =max(|ul, [v]), B =min(|ul,|v])

We note that there are two forms of each of these
matrices depending on whether |u| > |v| or vice versa.

Alternatively these equations could be written
0
-1
0
-1

= min(Jul, |v])

N[

(ATA)Z = o + BV [é

1
(AAT)E = ol + AU B
o = max(|ul, [v]),

which is again perhaps surprising.

XIII. LINEAR VECTOR FIELDS

From the above analysis, it seems profitable to plot
uy and vy in a 2D space analogous to the complex
plane. For v4 = 0 this space is precisely a picture of
the complex plane and the vectors u are the eigenvalues
of the matrix. When v4 # 0 we can modify the picture
in the following way. Plot the vector vy and the ball it
touches. Properties of the eigenvalues of A are then given
by what region w4 falls in relative to the ball generated
by vy. These regions are shown in the diagram below

XIV. APPENDICES
A. Eigenvector characterizations

B. Singular Decomposition (More Details)
NOTES TO SELF:

T, la c|la b
ara=ly i d
_[a*+ % ab+de
" lab+ed b+ dP

For HM: diagonal angle is ¢ — v and off diagonal
angle is ¢ + 5 — 1) where ¢ is the rotation angle of M
and v is the rotation angle of H.

o=, ¢+5-9
For M H: (above just replace ¢ with —¢)
—6—Y, —6+3-v
mh—kp  mp+hk | [—|ullv] 0
mp + hk —(mh — kp) 0 [u||v]

(1—|—cos(— —w)) COS(— - +§)
COS(_¢_z+g) —(1+c0(:(—¢¢—1/)>)

Dividing out the factor of |u||v|, multiplying the second
column by —1, and applying several trig identities gives

1+cos(—¢—z/)) —Sin(—¢—¢)
sin(—gb—w) 1—|—cos(—¢—¢)

Julfv]
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We note that the norm of each column is given by

\/ (14 cos)2 + sin® = V1 + 2c0s + cos? + sin?

2(1 + cos)

Normalizing each column gives

V3 (L4cos)  —1/5 (14 cos) i
1/%(1+cos)1j_igos \/ 3 (1 + cos)

And applying the half angle identities

sin

0 [1+ cos@ 0 sin 6
cos| = | =+ ——, nl=-)=—"—""-"_
2 2 2 1+ cosé
gives
r —o-v
OS 7_(152_1/) _¢ C :m _¢ P
—¢—y sin = )
—cos o+ ——2— cos
L 2 cos # 2
and finally simplifying
U— [ cos # sin L{@b _|cos # —sin ¢+w
| —sin 7¢27w cos # sin # cos ¢+w

These are the eigelnvectors of M H, the eigenvectors of
AAT and (AAT)2, and the singular vectors of U. The

angles here ¢ and v are given by

¢ = arctan <k>
m

1) = arctan (%)

Using the following identities

arctan o + arctan 8 = arctan atp
1—ap

a—pf
arctan o — arctan 8 = arctan
1+ ap

which gives that

k/m+p/h
o+ ) = pavtan (2T )
1 mp + kh
= §arct n (mh — k:p>
1 1 k/m —p/h
o) = urean (gt )
et mp — kh
= 5 arctan (mh+ kp)
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and the identities give that

cosarctanx =

sinarctanx =

gives that
1
cos ((/5 + w) =
mp+kh
I+ mz—k’p
mp+kh
mh—kp
sin (qb + w) =
mp+kh
I+ mIZ—kp
1
COS — =
( d}) 1+ mp—kh
mh+kp
mp—kh
sin (d) — 1/1) = mhtkp
14+ mp—kh
mh+kp
Reorganizing gives
1
cos (¢ + =
((b 1/}) 1+ mp+kh
mh—kp
mp+kh
mh—kp
sin (¢ + =
(d) 1)/}) 1+ mp+kh
mh—kp
1
cos ((;5 - 1/)) =
1+ mp—kh
mh+kp
mp—kh
sm( 71}[}) _ mh+kp
1+ mp—kh
mh—+kp
COS ¢ + /(/) =
2
sin o1 =
2
COS ¢ — ,(/} =
2
sin $—9 =
2

Replacing ¢ with —¢ and applying a similar argument
gives that the eigenvectors of HM are given by

~ [cos ¢;¢ —&in 1!’ [
Slnd) ) COS w2¢

Y=¢
2
1/1 ¢

sin
COS

e ¢ cos
o= w _
These are the elgenvectors of HM, the eigenvectors of

1
AT A and (AT A)2, and the singular vectors of V.

sin
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