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Abstract—This tutorial details matrix notation and vi-
sualizations for stochastic network flow and optimization
problems, ie. Markov decision processes (MDPs). We review
an incidence matrix style notation and as well as affine
and vertex constraint representations for Markov chains
and Markov decision processes in the average-reward,
discounted-reward, and total-reward versions of the prob-
lem in both the infinite and finite horizon cases. We review
primal and dual linear programming formulations of each
of these problems along with variable interpretations.
Detailed visualizations of the geometry of these problems
are provided throughout.

I. INTRODUCTION

Algebraic graph theory has become a staple mod-
ern engineering problems. In this tutorial paper, we
review basic algebraic grapth theory constructions with
references and visualizations. We then present mass
flow constraint formulations standard to many modern
optimization problems as well as linear programming
formulations associated with shortest path problems. We
note that while the visualizations in this paper are more
extensive and thorough than normal, virtually none of
the mathematical content is original; we have sought to
provide the appropriate references throughout.

Markov decision process have become a staple of
modern machine learning problems. In this tutorial pa-
per, we collect a matrix notation for Markov decision
processes, present the well known MDP linear program-
ming formulations in terms of this notation, and provide
a thorough set of visualizations of both the primal and
dual linear programs. The matrix notation also allows us
to make connections with the underlying graph structure
of the MDP and several algebraic graph theory construc-
tions (most notably the node-edge incidence matrix of a
directed graph).

Markov decision processes (MDPs) are a staple of
modern machine learning and control theory used for
modeling discrete decision processes with a discrete
state space. In this paper, we review and consolidate
the excellent matrix notation for MDPs presented in
[1] and make connections with standard algebraic graph

theory constructions (most notably the node-edge in-
cidence matrix of a directed graph.) We present well-
known linear programming formulations of MDPs in the
infinite horizon (average-reward and discounted reward)
and finite horizon (total reward) settings [2] in both
their primal and dual forms. Exposition, compact proofs,
and minor extensions are offered throughout. Extensive
visualizations are included throughout.'

The paper is organized as follows. In Section ??,
we define notational preliminaries and present several
illustrative examples of our visualization techniques.
(For more thorough explanation of the visualization
techniques, we suggest the linear programming tutorial
offered by these authors as well [?].)

In Section II, we present notation and visualizations
for stochastic transition kernels, policies, and the result-
ing Markov chains. We also relate these concepts alge-
braically to the underlying graph structure. In Section
??, we present the infinite horizon, average reward LP
formulation of an MDP and provide visualizations. In
Section ??, we examine the effect of a discount factor
on the transition kernel, present the infinite horizon,
discounted reward LP formulation of an MDP and pro-
vide visualizations. In Section ??, we present the finite
horizon, total (and discounted) reward LP formulations
of an MDP and provide visualizations. Appendix ??
contains a table summarizing notation for reference.

This paper assumes the knowledge and notation in the
following monographs.

o Vector visualizations

o Matrix column geometry

o Linear programming geometry

o Graph and network optimization geometry

II. STOCHASTIC NETWORK FLOWS

Transition Kernel: A Markov decision processes con-
sists of a state space S, an action set .4, and a transition
kernel P € [0,1]sx|.4 that gives the probability of
transitioning to a new state s’ from state s when action a
is taken. We will assume there is a unique set of actions
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associated with each state s, A, and the full set of actions
A= U, A,. We will use a € A to index into state-action
pairs (with the appropriate state s for a given action a
implied.) Let y € A4 represent a mass distributions
over the state-action pairs. We will use y, to refer to the
mass choosing action a (from state s).

The Markov property states that these transitions only
depend on the current state. We will represent the
transition kernel as a matrix P € [0, 1]ISIxI4l

[P],, , = Prob(s'|s, a)

For clarity we will assume that the first set of columns
of P correspond to the actions from state 1, the second
set of columns correspond to the actions from state 2,
etc. We may also use P, € [0,1]ISIXI4: to represent
the sub matrix that gives the transition from state s to
the other states for various actions within A,. With this
notation, we have that

P=[h Bis]

We also define an indicator matrix B, € {0, 1}ISIxIAl

1 ;ifs=4¢
sha 0 ; otherwise
The order of the columns of E should be consistent with
the columns of P. Assuming the structure of P detailed
above (and each action available from each state), Iy, =
Tis|xjs) © 17

Given the underlying graph structure we can define an
edge/state-action incidence matrix W € [0, 1]I€xISIIA]
such that

Py 4; if e runs from s to s’
wl,, =4 . 0
’ 0 ; otherwise

We then have the following identities
E,W = FEq, EW =P (2)

Mass balance over a stochastic transition network is
given by E,y = Py. Note that Es, P, W are also column
stochastic

17E, =17, 1T"p=17, 1Tw =17 (@3
and mass conservation is given by

1Tp=1TE,y=1TPy =17y (4)

Fig. 1: State distribution visualization

Matrix: Transition Kernels

W eRIEXIAL p— W e RISIXIA

Ex:

< Actions —

+
P = States
Py P, P3 Py Ps| |

with P2 = Ig,P3 = I4;P5 = Il and

0.13 0.32 0.32 0.13 0.32 0.32
0.70 0.63 0.63 0 0 0
P =|017 005 005, Pi=|0 0 0|,
0 0 0 0.70 0.63 0.63
0 0 0 0.17 0.05 0.05
<— Actions —
0.13 0.32 0.32 0 0 0 0 0 0]
0.70 0.63 0.63 0 0 0 0 0 0
0.17 0.05 0.05 0 0 0 0 0 0 +
w=|o0 0 0 1 0 0 0 0 0 | Edges
0 0 0 0 1 0 0 0 o |
0 0 0 0 0 0.13 0.32 0.32 0
0 0 0 0 0 0.70 0.63 0.63 0
0 0 0 0 0 0.17 0.05 0.05 0
0 0 0 1 0 0 0 0 1

Properties: Column stochastic

Example

For visualization purposes, we consider the following
transition kernel shown in the graph. P and W for this
transition kernel are illustrated in the box.

Policies and Markov Chains

Flow over a stochastic network is determined by
choosing a mixed strategy over actions at each state
7 € A4, Together these mixed strategies are referred
to as a policy. We will use m, € [0,1] to refer to
the probability of choosing action a from state s and



Fig. 2: Graph-policy structure

T € XA, to refer to the the full feedback policy. It
is also convenient to organize the policy into a matrix
IT € [0, 1]1AIXIS]

[H] e ifae A
@8 0 ; otherwise
Matrix: Policy Matrix
I € RIAIXISI
Ex:
<— States — 0.1 0 0 0 o
0.2 0 0 0 0
1 o o 07 0 0 0 0
0 1 0 0 0
o= |o 7o Actions = | 0 0o 1 0 0
0 0 0 0.3 0]
0 0 0 0.3 0]
. - . 0] 0 0 0.4 0
0 N . "\S\ 0 0 0 0 1

Properties: Column stochastic

For clarity, given the above structure of P and F, 11
has a block diagonal structure

Given 7 in vector form, note that IT = d(7) ET. Note
also that II is column stochastic.

1’ =17

A transition kernel can be thought of as sets of pos-
sible columns for a Markov transition matrix. A policy
selects the actual columns of M from the convex hull
of the possible columns given in the transition kernel,
collapsing the transition kernel down to a single Markov
chain. Indeed,a policy matrix II satisfies the identities

EIl=1, PI=M.

where M € [0,1]ISI%ISI is the Markov state-to-state
transition matrix. Note with notation of Equation (1) we
have that M[:, s] = Psm,. We can also define a Markov

transition matrix from state-action to state-action pairs
defined by a policy

N =1IP

Note that N is square, N € [0, 1]AI¥I41 and also that
in general, N is not full rank.

We say that 7 is a pure strategy policy if for each
s € S, m° puts all mass on a single action. We can
denote the set of pure strategy policies as I'. Note that
IT| = [, |As|. For the sample transition kernel listed
above there are six pure strategy policies.

1 0 o0 1 0 o0 1 0 o0
0o 1 o0 0o 1 o0 0o 1 o0
0 0 o 0 0 o0 0 0 o
M=1y o 1 H2=1o 0o o I3=1o 0o o
0 0 o o o 1 0o 0 o
0o 0 o 0 0 o o 0 1
1 0 o0 1 0 o0 1 0 0
0 0 o 0 0 o 0 0 o
0o 1 o 0o 1 o 0o 1 o
Ha=1o o 1 s =10 0o o Te=1o 0o o
0o 0 o o o0 1 0o 0 o
0o 0 o 0 0 o o 0 1

We make the following standard assumption for pure
strategy policies.

Assumption 1. For every pure strategy policy 11, the
resulting Markov chain M = PII is aperiodic and
irreducible.

Note that this assumption is enough to guarantee the
existence of a unique stationary distribution p € Ajg
for any policy 7 in matrix form II.

p=Mp= Pllp (5)

Given a state distribution p, we can compute the joint-
distribution over the state-action set y € A4 as

y=1lp
Note that the joint distribution can be expressed in terms
of the state distribution as

p = Pllp
EJqlp = Pllp
Esy = Py

Note that y is unique given m and p. Given y, p is
uniquely determined as p = Eyy. 7 is almost uniquely
determined by

P Ya — Ya
@ EQEAS Ya Ps

Equation (6) becomes undetermined when ps; = 0; how-
ever, this is unimportant since the policy from a given
state is only relevant when there is positive probability
mass in that state. Assuming that p > 0, we have that

11 = d(y) Bod(Byy) " = d(y)Ed(p) "
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Fig. 4: Graph-policy example

A. Markov Chain Time Evolution

Markov transition matrices define the update equations

p(t+1) = Mp(t), p(0) € Ajg) (6)
y(t+1) = Ny(t), y(0) € Ay )

for initial distributions p(0) or y(0). Since the initial
state distributions lives in the probability simplex, p(1)
is contained in the convex hull of the columns of M,
p(2) is contained in the convex hull of the columns of
M?, etc. Similarly, y(1) is contained in the convex hull
of the columns of N, y(2) is contained in the convex
hull of the columns of N2, etc. If the columns of M
and N live on the interior of the simplex (a sufficient
condition for Assumption 1), they represent contraction
maps on the simplex and the corresponding fixed points
(from Brouwer’s fixed point theorem) are the steady state

distributions. to Brouwer’s fixed point theorem. One can
visualizes the time evolution of the Markov chain as the
simplex contracting down to the steady state distribution.
This contraction process is illustrated in Fig. ??.

In the joint distribution space, selecting a policy
chooses a slice of the joint distribution space determined
by the columns of II. The columns of IV are then given
by the columns of P with the columns of II treated
as coordinate vectors. No matter what the initial joint
distribution is, y(¢) for ¢ > 1 will live in the convex hull
of the columns of II.

The convergence of the columns of M*! and N! to the
steady state distribution for each pure strategy policy are
illustrated in Fig. ?? and Fig. ??.

Note that a steady state distribution p € A|s) satisfies

p = Pllp
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Fig. 6: Illustration of distributions converging to steady
state.

Fig. 9: Steady state distribution hypercube illustration 1.

Eqlp = PIlp
Esy =Py
Fig. 7: Action space illustration. For given initial distributions, the set of achievable

state and state-action distributions over time can be



Fig. 10: Steady state distribution hypercube illustration
2.

visualized converging to the steady state distribution
shown in Fig. ?? in the state space and ?? in

Matrix: Markov Matrices

M =PI e RISIXISI N = IP € RMAXIMI

Ex:
0 0O 0 013 1
067 0 O 0 0
M=PI= 009 1 0 0 0
017 0 1 024 O
0 0 0 07 O
0.67 0.13 0.32 0.09 0.70 0.63 0 0 0
0.67 0.13 0.32 0.09 0.70 0.63 0 0 0
0.67 0.13 0.32 0.09 0.70 0.63 0 0 0
0.67 0.13 0.32 0.09 0.70 0.63 0 0 0
N =1IP = |0.67 0.13 0.32 0.09 0.70 0.63 0 0 0]
0.67 0.13 0.32 0.09 0.70 0.63 0 0 0
0.67 0.13 0.32 0.09 0.70 0.63 0 0 0
0.67 0.13 0.32 0.09 0.70 0.63 0 0 0
0.67 0.13 0.32 0.09 0.70 0.63 0 0 0.
Steady-State Eigenvectors:
. Left . 1TAf — 17T | Right . _
M:| L& YM=1 et . p=Mp
.| Left . 1TN — 1T | Right . _
N e-vecs ° 1N =1 e—vgecs . Hp - MHP

Properties: Column stochastic

B. Convex Combinations of Distributions

Since the joint-distribution space is an intersection
of an affine space and a convex cone, it is a convex
polytope, ie.

{yhr€d, = y=> o€y
k

for >, ar = 1, a; > 0. It is also useful to consider
how taking convex combinations of joint-distributions

relates to the resulting state-distributions as well as the
underlying policies. Steady-state state distributions are
also a convex set and taking a convex combination of
the joint distributions takes the same convex combination
of the state distributions. Specifically, if pr = E,yi we
have

p=FEoy=FE,Y oryr = > arBoyr =Y  arpi
k k k

The relationship between the underlying policies, IT and
{Ix}r is more complicated. Specifically since II is a
nonlinear function of y, we have that IT # 3", a;IIj.
The specific relationship can be derived from the follow-
ing

M=d(y) E;d(p) "

=d (Z ak?]k) EXd(p)”"
k
=" ard (ye) EXd (1) " d (pr) d (p)”
k
= Zakﬂkd(Pk)d(P)il
k

Pulling apart this equation, we have that each element of
the policy II is a convex combination of II; but that the
coefficients vary from state to state. Specifically within
state s we have that

Ok Pk QP
=3 () =Y ( )
& Ps L Zk A Pks
———
Brs
Note that this is also a convex combination. However

the coefficients are no longer o, and but rather weighted
by the values of the steady state distributions

Bis = aiPhs -y, 8)
>k CkPhs
Note that s varies between each state and also that

Brs > 0and ), Brs = 1.

C. Convex Combinations of Policies

We can also consider the affect of taking convex
combinations of policies. We first note that taking convex
combinations of full policies is not very natural thing to
do. A policy by definition is a set of mixed strategies
(or convex combinations of actions) at each individual
state. For a policy of the form

™ 0 0
0 o 0
Im= | . . .
0 0 7T‘3|



Fig. 11: Steady state distribution hypercube illustration 2.

each individual vector 74 is a convex combination of
pure strategy actions at each state. If we want to take
convex combinations of policies, a natural form is to
apply a different combination at each point. For a set of
policies {IIj}x

>k Brimrl 0 e 0
0 Sk BroTha - 0
o= : . C)]
0 0 >k Brls| ks
A convex combination of full policies of the form
I=> Bl (10)
2
applies the same combination at each state.
1) Basic Policy Convex Combinations: We start by

analyzing steady state distributions of combinations of
the form of (10). ( We will return to analyzing the steady
distributions of policies in the form of (9) which be
slightly more involved.) For a combinations of this form,
the resulting steady state joint distribution can be derived
as follows.

d(p) = (Z Bkﬂk> d

Z BT1,d(pr)d(pr) " "d(p))

:Z Bl d(pr)d(pr) " d(p))
k

Breaking this down by state we have that

=3 Bumapr e = 3 uns (222
k k N——

ks

Ys = TsPs

Note here that the joint distribution at each state is a
linear combination of the distributions of the original
policies, but this linear combination is state dependent,
ie. ays depends on the state s. Also although oy, > 0,
the set of a’s at each state may not be a convex combi-
nation, ie. Zk ags # 1. Without knowing the transition
kernel specifically, there is not a way to compare pjs and
ps and one can easily construct simpe two state MDPs
that demonstrate this isn’t a convex combination.

2) Combination of Policies that Differ in One State:
Before returning to the more natural general combination
case (9), we consider the special case, when the policies
II; are identical at all states except for one. In this case
there is actually a one-to-one correspondence between
linear combinations of policies and of joint-distributions.
To see this without loss of generality, assume the policies
are different in state 1 and the same in the other states.
This gives that

BiI1), = blkdiag <Z BrThk1, T2, - - ,7r|s>
k

= blkdiag <Z BrTh1, (Ekﬁwﬁ

k

, (Ekg,(/‘))ws>
(s )

we’ve taken ad-
are the same in

= blkdiag <Z BrTh1s (Ekﬁgm), e
k

Note that in this second equation
vantage of the fact that the policies



all the states but state 1 to write them as arbitrary
convex combinations. The only state that has a fixed
convex combination is the first state. Since there is only
one state with a fixed combination we can choose the
combinations in all states to be consistent with (8) so that
the joint distributions have convex combinations given
by aj. To figure out exactly what o is for a given set
of Brs, we note that the relationship (8) can be written
in matrix form as

65 = d(ps)a !

17d(ps)cx

where 35 = [Brs)k, o = [a]r and ps = [pgs]k. Solving

for ¢ in terms of o we get
B:1d(ps)a = d(ps)a
= 0= (I - ﬁslT)d(PS)a
= o~ d(ps)71ﬂ3
This nullspace description reflects the fact that (8) does
not restrict the overall scale of the «y terms. However,
mass conservation dictates that if y = ), azyy then

1Ty =Y, a1y = >, oy, = 1 and thus we should
scale each oy, to reflect this. This gives

d(pS)ilﬂs

“ T 1Td(p,) 15,
or element-wise
5ks/ﬂk’s
Qp = ————— (11)
Zk ﬁks/pks

Note the symmetry with (8). We now note that for
policies I, that differ only in state 1 for a convex combi-
nation given by [, we have the following construction:

1) Solve for oy, from Sy using (11)

2) Then solve for 5/, ..., B,(JA) from «y using (8)
We then have that
IT = Bl
_ agp _ OkPE|S|
blkdlag <Z Zkkakkplkl Telss - - Z Ek arPR|s] kISI7>

Considering each block diagonal element and rearrang-
ing gives

s = § O PrsTks = Ts E ApPks = TsPs
k k
Yks

where y >k owyr and p > ok 0kpr. We can
summarize these insights in the following. If we have
a set of policies I that differ in one state only, convex
combination in the form II = Zk BiI1; results in a

convex combination of the joint distributions of the form
y=> & OxYx Where o are computed according to (11).
We note that we can plug in the above forms for oy
for the distributions. We produce this here for the state
distribution specifically.
Assuming that the policies only differ in state s we
have that

Bks/pks ) /
g = o s = = s/ Vs
po = Dewne = 3 (150050 )

= (s 7 ) 2 ()

Note that specifically in state s we have

ps = 1/(;5ks/ﬂks>

3) General Combination of Policies: We now return
to the more natural general combination case (9). We
note this case is more complicated because in order to
define a steady-state distribution, we need the policy to
be defined at all the states; and thus the natural way
to talk about convex combinations of joint-distributions
will involve all possible combinations of strategies at
each state.

To be as general as possible, consider index sets of
strategies at each state and convex combinations. (Here
we will use n = |S| for notational simplicity.)

kieky, ...,
51 €A|Kl|,

k, € K,
s Bn € A,

We note that if we want to cover all possible policies,
we will simply index over the action sets and the convex
combinations will be the strategies at each state for a
given policy. In this case, the above notation would be
replaced with

ar € A1, ..., an € A,

k1 K1 kn Kn

7;1 €Ay - ;fn € Aja,
1 n

Returning to the original notation, we will use the
following to indicate the joint and state distributions for
all combinations of actions in the index sets as well as
for the distributions produced from convex combinations
from actions in the sets and mixed combinations



ki,....kn B1s--58n B1B2ks,....kn
Ps s Ps
ki, kn ’ B1s-sBn ’ yB1B2k37"‘7k‘.71r )
S S S
—— —— ————
combinations convex mixed
combinations combinations

We can then construct the joint distributions from a
set of policies using the following steps.

1) Initialize: { plrsekn } , Vs'eS
.

2) Loop: for s € S
Given state s:
For each ksy1,...,ky:

BiyesBs—1,Bs,ks41,0005M

Ps’
oo Bs—1,ks K100,
:Zakspf} Pomkokerton = yd e §
ks
with
..... o1 ks ket
A
ag Vks € KCs

o st ﬁks/ (pfl,..4,55_1,ks,ks+1,...,n)
Note here the subtle and critical differences in the
indexing of each term. Here that at each step we are
applying the convex combination {fj,}r, to fix the
strategy at state s. Assuming we loop in order through
the states, we have to apply this convex combination for
all other possible combinations of the remaining indexes
(for the unassigned states) ksy1,...,n. Again, if the
index sets are over pure strategies in each state and we’re
constructing distributions from a policy (m1,...,m,),
then K, = A, and {51@}]@5 = {ﬂ'ks }ks' It should
also be noted that this is a very inefficient way to
construct distributions however it can be elucidating
for understanding the structure of the joint distributions
related to the policies.

The above process takes repeated convex combina-
tions of distributions. These combinations can be enu-
merated as

n

with aj, computed from the iterative process given
above.

D. Joint Distributions as Convex Combinations of Pure
Strategies

From the above arguments, we note that we can
construct the joint distributions for any policy by taking
convex combinations of pure strategy joint distributions.
The set of pure stategy policies has size

T = TT 1A = [ x Ao o x A

and thus the set ) is a polytope with (up-to) |II] vertices.
We note that this polytope is actually embedded in a
| A|—|S| dimensional affine space since ) can be defined
by the constraints.

— |Al =
Stene | T EW ]y 2 |
The dimension of this affine space can be seen since the
matrix has a n.-dimensional left-nullspace and thus has
rank |S| and a | A|—S| dimensional right-nullspace (from
the rank-nullity theorem). Note in general that [TII| >
|A| = |S| (¥ has many more vertices than the affine

space it is embedded in.
One way to enumerate the set of joint distributions is

y:{yERlA‘ ‘y:Yz, 172=1, z>0, ZER‘H‘}

ie. y € YA where Y € RIAIXI i an indicator matrix
for the joint distributions

arals|,

= Ya
[ }a,al---a‘& ’

Matrix: Policy Indicator Matrix
Y e RIAIXIT

Pure-strategy
policies

Y = | | | Acgons

Y1 Y2 Y| +
I

Ex:

Properties: Column stochastic

The action-edge incidence matrix allows us an inter-
esting interpretation of the feasible set of strategies for
the MDP. This relationship is best understood in the
edge-flow space illustrated in Fig. 12. We can expand
the feasible set to be written as

(By—E)z=0, =Wy, 1Ty=1, y>0
The simplex constraint
1"y=1, y>0

ensures that z lives in the convex hull of the columns of
W . Note that since W is a column stochastic matrix, this



Fig. 12: Illustration of steady-state edge flows as the
intersection of the convex-hull A(W) and convex hull
of the cycle indicator matrix A(C).

also ensures that 172z =1, > 0 lives in a simplex in
the edge space as well. The incidence matrix constraint

(B, — Ej)z =0

then ensures that x must also live in the nullspace of the
incidence matrix and thus be a convex combination of
the cycles of the graph. We have then that the edge flow
vector  must lie in the intersection of the convex hull
of the columns of W and the cycle space of the graph.
This relationship is shown in Figure ??.

asdfasdfasdf

III. DISCOUNTED TRANSITION KERNEL

We now consider how this optimization problem is
modified in the infinite-horizon, discounted-reward case.
We introduce a discount factor 0 < § < 1. In the
following, we will make use of the following identities
(from harmonic series analysis)

oo
1= (1-0)8", (1-6)8' >0, vt
t=0
ie., {(1-0)0"}; is a convex combination.

Rather than assume the system is in steady state, we

assume that the agent is minimizing the discounted cost
oo

Rs(y) = _(1-6)5"rTy(t)

t=0
=T 3 (1-8)8"y (1)
t=0

T
=T Ys

for where y[t] is given by the update equation

y(t+1) = Ny(t), y(0) € Ay (12)
and where
ys = > (1-8)5"y(1)
t=0
= (1-6)6"N*y(0)
t=0

Note that this new effective joint distribution, ys is
indeed a probability distribution, ys € Ij4A since
it is a convex combination of probability distributions
{y(t)}22,- Similarly, we could define an effective state
distribution, ps € A‘5|

o0

ps = 3 (1-8)5p(1)

t=0
= (1-6)5"M" p(0) (13)
t=0

The optimal policy from the effective distribution is
again given by

— Ysa
Ta D Ysa

One can check that for ys given above
Esys = 6Pys + (1-6) Esy(0)
Egys = 0Pys + (1-0)p(0)

Indeed,
Esys = Es i(l—é)éth)ty(O)
t=0
= E, i(l-é)ét(HP)ty(O) + (1-0) Esy(0)
t=1

= §ESIIP iu-(s)&-l(np)f'lym) + (1-8)p(0)
t=1

= 5P S (18)5(11P) 5(0) + (1:)0(0)
t=0
= 6Pys + (1-0)p(0)

In other direction plugging in ys with ys = Ilps gives
E(Ilps = 6Plps + (1-6)p(0)
ps = 0Mps + (0)po

and iteratively plugging in for ps gives (13).

Thus we can parametrize the set of ys for all possible
policies similar to the steady state case in the infinite-
horizon average reward setting.

10



Ys = { Ys ’ Esys = 6Pys + (1-0)p(0), ys > O}
(14)

Note the similarities with the steady state version and
the additional dependence on the initial state distribution
po € A(Ls))

Note we could reparametrize (14) as

Ys = { Ys ‘ Egys = Psys, 1Tys =1, ys > O}

where we can define the equivalent transition kernel
Ps € [0, 1]1S1>IS1IA]

Ps = 6P + (1-0)po1”

Note that the columns of Pjs are simply convex combi-
nations of the columns of P with the initial distribution
po- This can be interpreted as (1-9) of the mass at each
state exiting the network at each action and reentering
according to the initial distribution. The equivalent tran-
sition kernel Pj is illustrated in Figs. ?? and in detail in
2?.

Again, note that Ps5 and Y are very dependent on the
initial condition as illustrated in Fig. ??

We can also define an equivalent edge-action transition
kernel.

Ws = 6W + (1-6) (I ® p(0)1T>

as illustrated in Fig. 2?
Given this definition, we have similar relationships to
those defined above.

Ps = E;Ws, E, = E,Ws

Matrix: Discounted Transition Kernels

Py = 0P+ (1 - 8)po1” Py € RISIX4
Wy = oW + (1-6) (1@ p(0)17) W € RIEHA

Properties: Column stochastic

Note, however, in general that p(0) will have some
positive mass on all states in the network and thus the
underlying graph structure will have to be the complete
graph. If the underlying graph for the original transition
kernel, P, is not the complete graph, it can be expanded
to be the complete graph with W having rows of all 0’s

From, this equivalent transition kernel we could define
equivalent transition matrices that satisfy

Ms = 6M + (1-6)po1”
Ns = 0N + (1-0)yo1”
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Fig. 13: Discounted effective steady-state distribution for
initial condition with transition kernel.

Initial

conditions
Effective 3 2
Q steady-state
distributions
Discount
factor
4 5

Fig. 14: Discounted effective steady-state distributions
for various discount factors and initial conditions.

These transition matrices then satisfy the steady state
equations

ps = Msps = 6Mps + (1-8)po1”
ys = Nsys = 6Nys + (1-6)yo1”

Matrix: Discounted Markov Matrices

Mg € RISIXIS|
N; € RMIXIMA

Mjs = 6M + (1-6)po1”
N5 = 6N + (1-6)yol”

Properties: Column stochastic

Note that
lim Ps = P lim Ps = p(0)17
61—>n% é ’ 51—>I% é p( )
limY; =Y, lim Y = p(0)17
lmYs =Y,  limYs=p(0)

as illustrated in Fig. ??
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Fig. 15: Convex hull of trajectories

However, Ps is a simply a convex combination of P
and p(0)17

Ps =8P + (1-0)p(0)1"

where as Y is convex combination of the whole set
trajectory {Y (¢)}72,.

oo

Y5 =Y (1-0)8'Y (1)

t=0

This convex combination is illustrated (for the pure
strategy policies) in Fig. 15.

Matrix: Discounted Policy Indicator
Y e RITIAIX|II]

Pure-strategy
policies

Y:P | |

i)
Actions

Y1 Y2 ym |+

||--- I}

Ex: Properties: Column stochastic

IV. FINITE-HORIZON TRANSITION KERNEL

In finite horizon problems, we more specifically model
the transients of a system rather than just considering
steady state behavior. A finite horizon flow on a graph
over a set of time steps 7 = {0, ---7'—1} can be written
as
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E,x(0) = p(0),
{X(t)} = z(t) e RIEN | E x(t+1) = Biz(t),
teT z(t) >0, teT,

where p(0) is the inital mass distribution on the states
and X (t) represents the reachable z(t)’s at time t. When
we want to emphasize the emphasis on the initial con-
ditions, we will sometimes use the notation X (t‘p(O)).

We may also want to write out this set in matrix form

E, 0 0 0 2(0) (0)
~E; E, 0 0 z(1) 0
0 0 E, 0] |2(T-2) 0
0 0 —E; E,| |2(T—-1) 0

If stochastic transitions are allowed, this constraint
incorporates a transition kernel

Ey(0) = p(0),
(Y0} =y e RA| By(te1) = Py(t),
T y(t) >0, teT

Note that either of these constraints could easily be
modified to allow for time varying transitions or mass
entering at other points along the time horizon besides
t=0.



E; 0 0 0 y(0) p(0)

-P E, 0 0 y(1) 0
0 0 E, 0] |yT-2) 0
0 0 —-P E,| |y(T-1) 0

EW

Note that we may also want to define several of the
component matrices separately specifically

E, c RISITIXIENTI g, ¢ RISITIXIENT]

S AllT
P e RISITIXIAIT]
W e RMITIXIAIT]

E, € RISITIXIAIT]

separately as

Eo = blkdiag(Eo7 ..
Es = hlkdiag(ES, R

- Eo),
 Es),

E; = blksubl(E;, ..., E;),
P = blksubl(P, ..., P),
W = blkdiag(W, ..., W)

Similarly, to the infinite horizon cases we have that
E=E;-E,, Es=E,W, P=EW

And also that each of these matrices is column stochastic

1"E, =17,
17p =17,

17E; =17,

17E, =17, 17w =17,

which again represents mass conservation. We can also
define policies in time-dependent setting

IT = blkdiag(I1(0), ... TI(T — 1))

Note that we then have that

I o 0 (0) PO
M T ol | p(1) 0
(Es - P)HP = . . = .
0 o0 M I |p(T—-1) 0
I-M

This affine-space defines the state distribution rollout
for a policy II, The right nullspace which defines state
distribution rollouts for a given policy (p(0),...,p(T —
1)) Joint-distribution rollout is given by

y =Ip = (Up(0),...,Ip(T — 1))
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A. Distribution Policy Rollouts

Joint distributions in the finite horizon setting can
also be written as convex combinations of pure strategy
policy rollouts. In the finite-horizon setting the set of
pure strategy policies is even larger than in the infinite
horizon setting

| = [T IT 1Al
teT seS
Given a policy IT = (I1(0),...,II(T" — 1)) the state
distribution at particular time is given by

plt) = M(t = 1)--- M(1)M(0)po
= PII(t — 1) - -- PII(1) PII(0)po

Note here that resulting distribution p(t) at time ¢ is

multi-linear in the policy at each time-step ¢’ < ¢. Thus

if we let TI(¢ %k ai Il (") for some ¢ and leave

ﬁll the other policies at each time step the same then we
ave

p(t) =PIt —-1)---P (Z aka(t’)> -+ PII(0)po
k
=S ar(PII(t = 1)+ PI(E) -+ PI©O)p0 ) = > apr(t)
k k
From a set of possible pure strategy policy rollouts, we

can then build up the rollout of any policy as successive
convex combinations.

Matrix: Policy Rollout Matrix/Tensor

v e RITIAIXIm|

i

y=1| |
yioY2 oy

Pure-strategy
policies

Times X
Actions

4

Note also that Y(¢) could be represented as Y(t) =
Y (t)A as the convex hull of Y (¢) where the columns
of Y (t) are computed by enumerating all pure strategy
policies up to time £.

Example: Finite horizon flow problems in the state,
edge, and action space are illustrated in Fig. ??.

A policy at each time step can be thought of as a
funnel that directs mass from the previous time step
to it’s updated distribution. These policy evolutions are
illustrated in Figs. 16 and ??.

From various initial condition we can also compute
the reachable sets for any policy.
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Fig. 16: Finite horizon transition structure

V. INFINITE-HORIZON, AVERAGE-COST MDP

The infinite horizon, average reward MDP can be
thought of selecting the joint steady-state distribution
that achieves the highest average reward. Each action has
a constant reward assigned to it given by a reward vector
r € RMI. We note that if we can break the rewards down
into rewards on the states, rs € RISI the state actions
ra4 € R and the edge rewards ¢ € RI€! reward we
can break r down into various pieces

T = (rs)TEs+ (ra)” + (re)Tw

T =

15)

In the stationary case, we model an agent as optimizing
their time average reward. Given Assumption 1 for a
particular policy m and the corresponding steady state
joint distribution y € A, 4| the total expected reward is
given by R(y) = rTy.

If we enumerate all possible pure strategy policies, in
the matrix Y solving for the optimal policy can be done
by solving the linear program

{max rTYz | 172 = 1, 2> 0}

Here z € RE‘ is the mass distribution over the pure
strategy policies and 7Y is vector of rewards for each
p.s. policy. Computing the optimal policy in this form
can be done graphically by assigning the appropriate
rewards r, to each action and then visualizing the
magnitude of 7Y}, using the method illustrated in Fig.
29

This method is shown in Fig. ?? for

r’=[1.7,2.1,1.3,2.1,2.5,1.7]
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Optimization

Y

\ /\ ‘ A= TTy
Q H»H» Optimal
| el || | Solution
— |
[ Inefficiency
B Reward

Fig. 17: Tllustration of a suboptimal reward distribution
for the dual problem. Minimizing A\ gives the optimal
solution.

The dual formulation of this problem is given by

{

where the dual variables are A € R for the equality
constraint and v € RE‘ for the inequality constraint.
A is an upper bound on the maximum average reward
for a policy and v, is the inefficieny of policy .
Intuitively, solving the dual optimization problem can be
pictured as pushing A as low as possible while keeping
v > 0 as shown in Fig. ??. Optimality is guaranteed by
complementary slackness vz, = 0, ie. no mass chooses
an inefficient policy. Since the overall reward is a linear
function of the steady state distribution and the set of
steady-state distributions is characterized by a polytope,
a pure strategy is optimal (if not uniquely optimal).

min A | AL =0Ty 07, 0T > 0}
v

A. State Formulation

Alternatively, we can characterize the feasible set of
steady state distributions using a more computationally
feasible formulation.

o

max rTy ‘ Esy = Py, 1Ty =1, y> 0}

The dual problem for this formulation is given by

{

At optimum, A € R represents the average reward per
action. The dual variable v € RIS! represents a value
function on each state that encodes how the immediate
reward r, differs from the average reward. ¢ = v/ P ¢
Rl encodes the reward to go for a particular state-
action pair. yu € R‘fl represents the inefficiency of any
given action. The optimum can be found by minimizing

LYINT

min A | A=rT 4+ M7 +TP —oTE, + 4", p7 >0

j



the average reward as much as possible while ensuring
that all actions are either optimal or suboptimal, ie. have
a positive inefficiency. At optimum, the complementary
slackness constraint ¥y, i, = 0 ensures that no subopti-
mal actions are chosen.

Remark 1. The constraint above can be rewritten
element-wise as

USZTQ+Qa_)\_MQ (16)

where ¢ = vTP € RIAL 1, is the immediate reward
for choosing action a from state s; q, is the expected
future reward; . is the inefficiency of that particular
action and X is the equilibrium average reward. v then
is a value function on the states that tracks the difference
between the immediate reward and the average reward.
Equation 16 can be thought of as a version of the
Bellman equation.

Lin Program: Primal IH, Average-Reward MDP

Affine T
represent- max 7r°y
ation Y
st. (BEs—P)y=0,1Ty=m, y>0
Vertex T
represent-  MmMax 1Y
ation Yy
st. y=Yz, sz:m, z22>0
Objective & Primal Variables:
Joint- Policy- Average -
Interpret distribution distributjor reward
Variable | y € RL_ I € RL_ rTy
Constraints & Dual Variables:
Constraint  Interpret Dual  Interpret
Total
1Ty = m AER Average
Y conrll‘:;iv. reward
Local
— S Value
(B =Ply=0  me  vERSL g,
Mass | Al .
Y >0 oSG n e R+ Inefficiency

Example: An illustration of this dual optimization
problem is given in Figs. ?? and ?? for the transition
kernel P given before and again

rT=[17 21 13 21 25 17

where action a 1 corresponds to state 1, action
a = {2, 3} correspond to state 2 and action a = {4, 5,6}
correspond to state 3. Assigning a height v, to state
s and then super imposing column a of the transition
kernel P on the convex hull of the heights gives a way
to visualize ¢, = v” P,. Adjusting the base of r, by
q, allows us to compare the relative heights taking into
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4 [ Inefficiency
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Average
reward

Average
time step

Fig. 18: The optimal solution that satisfies complemen-
tary slackness is found by minimizing A while maintain-
ing p > 0.

Optimization
at each
time step...

[ Inefficiency
W Reward

Optimal Solution

M|

Mg

Mg
M vy

Mg

Average
reward

Fig. 19: The optimal solution that satisfies complemen-
tary slackness is found by minimizing A while maintain-
ing > 0.

account the reward-to-go. Any inefficiency with respect
to a particular action p,, is stacked on top of r, as well.
The value of v,+ A\ for any particular state must be higher
than 7, + pq + g, for any action a associated with that
state s. Solving the dual problem involves reducing A
as much as possible while maintaining this restriction.
The values of v can be adjusted too though both v4 and
vs + A have to differ by A for all states.

Right multiplying the constraint by a steady state pure
strategy joint distribution y (that satisfies E,y = Py,
lTy =1, y > 0) gives

My +0TEgy =rTy+ ply + 0" Py
A=rTy+puly



This relationship is illustrated in Fig. ??.

Lin Program: Dual IH Average-Reward MDP

Affine

represent- min A st )\1T = UT(P = Es) + /LT, n>0
ation AU, 1
Vertex

represent-  min A S.t. AT =,TR + Z/T7 v>0
ation w, 1

Objective & Primal Variables:

Average- Value Action Policy
Interpret reward function inefficiency inefficiency
. L
Variable | Ae R v eRISI  pe le‘l v eRy !
Constraints & Dual Variables:
Constraint Interpret Dual Interpret
Ave-reward R
T T ] |Al Joint-
AT 20t (P —Ey)  wperbnd -y € RET gigibuion
Ave-reward .
)\IT > T‘TR upper-bnd z € R‘AI APo‘hcyA-
= (policief) aF distribution

B. Infinite-Horizon, Discounted-Reward MDP

If the effective steady state joint distributions are enu-
merated in the matrix Y}, the infinite-horizon, discounted
MDP can be formulated as the following linear program.

{min TTY(;Z 17, = 1, z> 0}

A similar technique to the average reward case can be
used visualize the solution shown in Fig. ??.
The reward for a particular pure strategy policy & is

rYor =17 2(1'6)6t(PHk)tHkP(O)
=0

= (1-6)8"r" (PIIg) Tk p(0)
t=0
The dual formulation of this problem is given
{r&lin A AT =Ty + z/T, T > 0}

where again the dual variable A € R for the equality
constraint is an upper bound on the maximum discounted
reward and v € Rf‘ gives the inefficiency of each policy.

Again alternatively, we can characterize the feasible
set of effective steady state distributions using a more
computationally feasible formulation and the effective
transition kernel as

{

The additional dependence on p(0) makes the overall
mass conservation constraint redundant and thus we can
write this problem as

max 7 ys

1 ’ Eyys = Psys, 1Tys = 1, ys > 0}
[
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max rTy5
Ys

| Eoys = 6Pys + (1-0)p(0)1", s > 0}

We will consider the dual problem for this second
formulation since it is more commonly used.

{

min (1-8)v” p(0)

v,

‘ vVIE, =rT +50TP+ 17, yT > 0}

Lin Program: Primal IH, Disc-Reward MDP

Affine
represent-
ation

T

max 7Ty

st. (Bs —6P)y=(1-10)p(0), y >0
Vertex
represent-

'T'Ty
ation

max
Yy

st. y=7Ysz, 1Tz:1, z22>0

Objective & Primal Variables:

Effective Effective

Discounted-
Interpret joint-distribution  policy-distribution reward
q A II
Variable RS ]RL_ ! AS ]RL_ ‘ rTy
Constraints & Dual Variables:
Constraint  Interpret Dual  Interpret
Total .
1Ty =m T AER Discounted
y conserv. reward
Local Effective
(Es — Ps)y=0 mass v € RIS value
conserv. function
Mass | Al .
Y >0 st n e R+ Inefficiency

The dual variable v € R!S!| now represents a dis-
counted reward-to-go on each state. Element-wise the
constraint is given by

Us:ra+6QG+ua

where ¢ = vTP € R, r, is the immediate reward for
choosing action a from state s; dq, is the discounted
expected future reward pu, is the inefficiency of that
particular action. Again, Equation ?? is closely related
to a discounted Bellman equation. At optimum, the com-
plementary slackness constraint ys,u, = 0 ensures that
no suboptimal actions are chosen. The upper bound on
the optimal discounted reward A is now encoded in the
value function v with A = (1-0)vTp(0). The objective
is again to minimize this discounted reward while still
maintaining positive inefficiency of each action.

This dual program for the discounted problem is
illustrated in Fig. ??

Note that as § — 0, the individual rewards are no
longer offset by the future reward ¢, and only the
immediate reward is taken into account.



Right multiplying the constraints by any pure strategy
effective distribution Yjs for initial distribution p(0)
gives

vl EYsy, = 11 Vs + 00T PYys + 1 Yis
v (Ey — 6P)Ysp = 7 Yis + p7 Yas
(1-0)vT p(0)17 Y51 = v Yis + pu” Yies
(1-0)vT p(0) = 7 Y5 + p Yis
This is illustrated for § = 0.6 and § = 0.0 in Fig. ?2.
In order to find the optimal policy, it is important that

p(0) > 0 for each element, ie. there is positive mass on
each state.

Lin Program: Dual IH, Disc-Reward MDP

Affine

represent- min A= (1 — 5)UTP(0)
ation A,v, 1
st. vTBEs=60"P+uT, p>0
Vertex .
represent- min A
ation w,
st. AT =rTys4+07 v>0
Objective & Primal Variables:
Average- Vali Action Policy
Interpret rewzu%d funiﬁf,n inefﬁcierj{/l inefﬁcielncyl
9 |S| II
Variable | Aé R v €eR neERY veRy
Constraints & Dual Variables:
Constraint Interpret Dual Interpret
Ave-reward R
T T 4 [A| Joint-
AT 20T (P - Es) “&gf&)s;‘)d y e RY distribution
Ave-reward |A| Pol
ar T 2 olicy-
AL >R “(ggﬁrc}’e‘gd z € RY distribution

VI. FINITE-HORIZON, TOTAL-REWARD MDP

The reward for a finite horizon flow problem is either
the total (6 = 1)or discounted reward (6 < 1) summed

over time
y)=>_ &r(t) y(t

teT
The finite horizon MDP problem is then given by
Esy(0) = p(0),
max Z 5tr( E.y(t+1) = Py(t),
y(t),teT
y(t) >0, teT

The solution to this optimization problem can be
visualized as stacking up the rewards received at each
time step. This is illustrated in Fig. ??. With a discount
factor, the contribution of the rewards at later time steps
is reduced in Fig. ??.

The illustrations of the rewards for roll outs of policies
in the total reward and discounted reward cases are
shown in Figs. ?? and ??
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The dual problem for the above optimization problem
is given by

()T Es = r(t)T + u(t)

. ) ;’U(t‘Fl)TP
min  v(0)* p(0) (T =r(T
v(t), u(t) g u((t))z 0, t(e)ﬁs'

The dual variables v(t) € RI°I are a value function on
the states encoding the reward-to-go. u(7T') € R‘fl en-
codes the ineffiency of particular actions. Elementwise,
the constraint is given by

Vs(t) = 1o (t) + pa(t) + qa(t+1), VseS,aeA

where ¢(t) = v(t)T P which is the finite horizon Bell-
man equation. The terminal condition v(T)7 = rg(T)"
makes the problem directly solvable by dynamic pro-
gramming. The solution to this problem via dynamic
programming is illustrated in Fig. 2?.

In the discounted case, the costs are reduced, Fig. ??.

At optimum for a given time varying joint distribution
that satisfies the constraints, we can right multiply each
constraint by y(¢) and sum them all to get

R = Z( + () y())

and
T—1
R= Z v()T Esy(t) — v(t+1)T Py(t)
= T—-1
=v(0)"p(0) + o(t)" Esy(t)
=1
T—-2 ‘
= > w(t+1)T Py(t) — o(T)T Py(T-1)

t=0

T—2
0)+ > w(t+1)T <Esy(t+1) - Py(t))
t=0

— ’U(T)TiPy(T—l)
=v(0)"p(0) — o(T)" p(T)

The quantity >, r(t)Ty(t) is the reward for that
particular policy and >, pu(t)Ty(t) is the inefficiency of
that policy. By complementary slackness, no inefficient
policies are chosen at optimum. These roll outs are
shown in Figs. ?? and ??.
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