Network Optimization
Visualizations

Dan Calderone

Abstract—This tutorial details matrix notation and visu-
alizations for network flow and optimization problems. We
review standard incidence matrix notation and affine and
vertex constraint representations for graph flow problems
including routing and cycle problems. We then present pri-
mal and dual linear programming formulations of shortest
path problems along with variable interpretations. Detailed
visualizations of the geometry of these problems is provided
throughout.

I. INTRODUCTION

Algebraic graph theory has become a staple mod-
ern engineering problems. In this tutorial paper, we
review basic algebraic grapth theory constructions with
references and visualizations. We then present mass
flow constraint formulations standard to many modern
optimization problems as well as linear programming
formulations associated with shortest path problems. We
note that while the visualizations in this paper are more
extensive and thorough than normal, virtually none of
the mathematical content is original; we have sought to
provide the appropriate references throughout.

Markov decision process have become a staple of
modern machine learning problems. In this tutorial pa-
per, we collect a matrix notation for Markov decision
processes, present the well known MDP linear program-
ming formulations in terms of this notation, and provide
a thorough set of visualizations of both the primal and
dual linear programs. The matrix notation also allows us
to make connections with the underlying graph structure
of the MDP and several algebraic graph theory construc-
tions (most notably the node-edge incidence matrix of a
directed graph).

Markov decision processes (MDPs) are a staple of
modern machine learning and control theory used for
modeling discrete decision processes with a discrete
state space. In this paper, we review and consolidate
the excellent matrix notation for MDPs presented in
[1] and make connections with standard algebraic graph
theory constructions (most notably the node-edge in-
cidence matrix of a directed graph.) We present well-
known linear programming formulations of MDPs in the

infinite horizon (average-reward and discounted reward)
and finite horizon (total reward) settings [2] in both
their primal and dual forms. Exposition, compact proofs,
and minor extensions are offered throughout. Extensive
visualizations are included throughout.!

The paper is organized as follows. In Section II,
we define notational preliminaries and present several
illustrative examples of our visualization techniques.
(For more thorough explanation of the visualization
techniques, we suggest the linear programming tutorial
offered by these authors as well [?].)

In Section ??, we present notation and visualizations
for stochastic transition kernels, policies, and the result-
ing Markov chains. We also relate these concepts alge-
braically to the underlying graph structure. In Section
??, we present the infinite horizon, average reward LP
formulation of an MDP and provide visualizations. In
Section ??, we examine the effect of a discount factor
on the transition kernel, present the infinite horizon,
discounted reward LP formulation of an MDP and pro-
vide visualizations. In Section ??, we present the finite
horizon, total (and discounted) reward LP formulations
of an MDP and provide visualizations. Appendix ??
contains a table summarizing notation for reference.

This paper assumes the knowledge and notation in the
following monographs.

e Vector visualizations

o Matrix column geometry

o Linear programming geometry

II. NOTATION AND VISUALIZATION TECHNIQUES
A. Basic Notation

Let I, «, refer to the identity of dimension n, or
usually just I in context. Let A; refer to the jth column
of the matrix A € R™*"™ and A; refer to the ith row of
the matrix

|
A= |4
|

!©Dan Calderone, September 2022

R2 R3 R4

Al2)

A=[Ar] a=[a; 45 45) A= [4 4q 4]

N /AA2 W ANy AA,
As Az
Ay Ay
Ay Ay

Fig. 1: Visualizations of simplicies in R?, R?, and R*
mapping to the convex hull of A.

R R2

ey

A=A, A= A1 AZ [41 4z 45 44

A= A1 AzAg A=

Az

Fig. 2: Visualizations of unit cubes in R2, R3, and R?*
mapping through A

Applying this to the identity gives I;
standard basis vector and A; = Al;.
Let A,, represent the simplex of dimension n.

to be the jth

An:{xeR”|1Tx:1, xZO}

where 1 is the vector of all 1’s of the appropriate length.
We will use AA,, (or just AA with the dimensions
determined in context) to represent the convex hull of
the columns of A € R™*™

AAn:{yeRm ’ y = Ax, xEAn}
. Similarly, let OJ,, represent the n-dimensional unit cube.

Dn:{xeR”’0§x§1}

and let A0, (or, again, AJ with n determined by
context) be the set
ADn:{yeRm ’ y = Az, xeDn}

. These sets are visualized in Fig. ?? & 2.

A= [Al A, Ag}

Fig. 3: Specific points labeled in AA for As.

B. Visualization Techniques

Fig. 4 illustrates more specifically how several key
points in A,, map to points in the convex hull of A. We
use this method for visualization convex combinations
quite extensively throughout this paper.

Traditionally, vectors are visualized in as arrows in 2
or 3-dimensional spaces. If we think of each element
of a vector as giving a displacement in a particular
axis direction, we can draw 2D projections of higher
dimensional vectors by simply assigning directions in 2D
for each axis and then adding up the displacements along
the various axes to get the overall vector. Examples of
this for drawing 4D vectors are shown in ?? and 2. Again
the result is a 2D projection, but we can still get a lot
of intuition from it especially when visualizing convex
hulls. We should note that in 2D projections, a certain
amount of information, the “depth” direction(s), in the
image gets lost. If we’re drawing a 3D vector, depth
is one dimensional (out of the page). If we’re drawing
a 4D vector, depth is 2-dimensional; for a 5D vector,
depth is 3-dimensional, etc. Any intuition derived from
projections of higher dimensional sets should be verified
with rigorous proof.

It is also possible to visualize vectors as stacks of
various heights (possibly negative) determined by the
values in the vector. For example, 77 = [ry 73 73] can
be represented as three stacks of heights r1, 75, and r3.
The value of r”x for any point z € A can then be
visualized by drawing the convex hull of the tops of
the stacks and locating z relative to this convex hull;
the height of x relative to the convex hull is »7z. This
visualization method is illustrated in Fig. 2?.

C. Linear Programs

To illustrate basic versions of the visualization tech-
niques we will use

R : R? ‘s
¥,
4 -1
—— -1 : -1
Uy P 3 Us
)2 R%)2 R®
D4 DB
1 S
3 3 Ea :
© N\ 4 g
~

Fig. 4: Multi-dimensions visualization.

1 1
371+ 373

L+ dr+ 1n
31T 32T 3l3

1 1
3T+ 3r2

1. 4 1,
T2+ 373

I

Az

Fig. 5: Visualizing 77z for 77 = [r 7o r3] and = € A3

1/3
x= |:1/3:|
1/3

3

Origin

Origin

Fig. 6: Visualizing r*x for r” = [ry ro 73] and 2 € A3

III. NODE-EDGE INCIDENCE MATRIX

Let G = (S, &) be a graph with nodes or states S and
directed edges £ where an edge e € £ runs from s to
s'. Let p € R‘f' represent a mass distributions on the
states and x € lel represent a mass distribution over
the edges.

We can define graph indicator matrices E,, E; €
{0,1}IS1¥I€] whose e-th columns indicates the starting
and ending nodes of edge e, respectively.

5.~ {;
1.~ {

The matrix £ = E, — E; is the standard node-edge
incidence matrix of a directed graph. If we think of a
vector = € RI€I that corresponds to amounts of flow on
each edge of the graph, the equation Fx = 0 corresponds
to mass conversation at each node in the graph.

If we want to reorder the nodes and/or edges of
the graph we simply multiply the incidence matrix
by permutation matrices U and V (of the appropriate
dimensions) on the left and right respectively. The new
incidence matrix is given by E' = UEV. If we want to
flip the direction of an edge, we multiply that column
of E by —1. Algebraically, this can be done by left
multiplying by E by a diagonal matrix V' with 1’s and
—1’s on the diagonal.

; if edge e starts at state s

; otherwise

; if edge e ends at state s

; otherwise

A. Domain: Edge-Space

The domain of the incidence matrix FE, RI€! is the
space of mass flows on the edges of a graph. There are
several fruitful interpretations of Ex for an edge flow
vector z € RI€I.

1) Row Geometry: Flow into nodes: As discussed
briefly above. Each row of E, E;, (corresponding to node
i), the quantity E;z sums the flow into node i, [E}] ;T
and subtracts the flow out of node i, [E,];z. If a vector
x is orthogonal to E; it means flow into node i is equal
to flow out of node i, ie. E;z = 0 = [E;];z = [E,];z.
If a flow vector z is orthogonal to all rows, ie. in the
nullspace of F, then mass is conserved at each node. We
will return to this discussion later.

2) Column Geometry: Tension between nodes: A sin-
gle element of a flow vector x, . refers to the flow on
edge e. If e runs from state s to s’, the quantity F.z.
indicates that flow z. must come out node s and flow
into node s’ in order to generate flow of x. on edge e. A
general linear combination of the columns, Ex indicates

2) -
A Inefficiency Inefficiency
R3 B Reward 3 A B Reward
Optimal ¥ TR
Isoclines \Zrtex 1 us Isoclines e Opgmal
T 12 edge
of rz =1 of rTx &
=1
Dual feasible Dual optimal
Projection of Dual feasible Dual optimal Any weighted combination
9 (T, _,.T fecti options 1 and 2 is optimal
3 ¥ Z()=r Unique solution 3 ¥ EE’;‘jcil)Or:(:fl or opf ?ons and ‘ is opf !‘ma
s = Continuum of solutions
Fig. 7: Visualizing r*z for rT = [ry 75 r3] and © € A3
©) 3
Inefficiency 2 7D
[l Reward E1
O] 5 a
/
F =—-F
E>
Ey
/
@" E ® . Effective edge

Fig. 8: Visualizing r7x for r” = [ry ro 73] and 2 € A3

Fig. 9: Illustrating range of ET

how much flow must come in and out of each node to
generate the desired edge of x.

3) Sums of Edges: Effective Edge: We now consider
specific linear combinations of the columns of F (with
coefficients of 1 or —1) construct vectors of the same
form of the columns with a 1 and a —1. These combina-

= F’

E'=—E, —Ey+ B4

Fig. 10: Edge combinations

tions can form an indicator vector for an “effective” edge
between two nodes. (See the discussion of routes below
for an algebraic representation.) For example, for the
graph shown in Figure ??, taking a linear combination
of the columns E;, E5, and E4 with the appropriate signs
creates an indicator for an edge between nodes 1 and 5.
Note how the signs relate to the direction of the edges
and how the values in the intermediate vectors cancel
with each other. Using this method we can represent any
edge in a cycle of the graph as a linear combination of
the other edges in the cycle.

—1 —1 0 0

0 1 —1 0

O|l=[0|+|1|—-|1

0 0 0 0

1 0 0 —1
N——

E, Es Ey4

BT = BT

ET =El +E] + Ef

tdg%

flows cancel...

Effective Node)

Fig. 11: Linear combinations of rows of E7

Matrix: Graph Incidence (Node-Edge)
E = E; — E, € RISIXI¢]

Ex:
< Edges —
0O -1 -1 1 0 O 1 0 0] ¢
g0 1 0 10 -1 0 1 O}Nodes
0 0 1 0 o 1 -1 -1 0
T oo T o203
Bases
Range(E): F Range(ET): GT
Null(ET): 17 Null(E): C

SVD: ¥ = square-root of Laplacian eigenvalues

Left . TrrT's—1
vectors * N U, ETUY
Laplacian
eigenvectors

Right .
vectors *

B. Co-Domain: Node-space

1) Column Geometry: Edge Tension:
2) Row Geometry: Node values/potentials:
3) Sums of Nodes: Effective Node:

C. Tree-Cycle Decomposition

This edge representation idea leads to a general de-
composition for incidence matrices based on spanning
trees and the cycles of a graph. We note the following
decomposition theorem for node-edge incidence matri-
ces. Up to a reordering of the columns, any node-edge

incidence matrix can be written in the form
E=FG=F [I C’]

where F € RISIXISI=1 is the incidence matrix for a
spanning forest (named cause it is a set of spanning trees)
and C € RI€I=ISI+1 is a representation of the other edges
as linear combinations in of edges in the spanning forest.
Note that if we group nodes in spanning trees together,
the above decomposition can be expanded as

™ -~ 071[-~ 0 Ci -~ 0

0 - Tn] Lo I 0 - Cp

where T}, is the incidence matrix for a spanning tree
for each connected component and CY is the correspond-
ing representation of the cycle edges with respect to that
spanning tree. Depending on context we may want to
group edges of connected components together as well.
In this case the appropriate decomposition becomes.

T - 0 I Ci --- 0 0

0 - Tollo 0 - 1 Cn
We note briefly that the columns E (ie. F) for a span-
ning forest are linearly independent (proof in Appendix

XXX).

D. Domain/Co-Domain Descriptions

The domain and co-domain of the incidence matrix
have intuitions descriptions in terms of edge flows and
node values respectively. Intuitively if z € RI€l is an
edge flow vector, then the quantity S = Ex is the mass
flowing into and out of each node. If v € RIS is a set of
values on the nodes of the graph, the quantity v7' E = ¢7
is difference in values (or “tensions”) along the edges.
Both the domain and co-domain can be decomposed
into two orthogonal subspaces based on the incidence
matrix and the fundamental theorem of linear algebra.
This decomposition is illustrated in the figure below. In
the following sections, we give further descriptions and
intuitions for these spaces as well further visualizations.

1) Range of ET: The orthogonal complement of the
space of cycles, the range of E7 is the space of flow
into/out of each nodes. The rows of E are indicator
vectors for which edges come into each node (with a
negative sign indicating that the flow is actually out).
For any edge flow x, the equation ETz sums up the

Node Values]R'S‘ €]

Edge Flows R

RISI=ne

Fig. 12: Fundamental theorem decomposition of F

Q<==0 /O\
Q/ Q/ \O) ’

VAR O /U

Fig. 13: Tllustration of graph structure decomposed into
forest and cycle edges

Spanning
Forest

flow into that particular node. A basis for the range of
ET is given by the rows of

G=[1C]

Span is immediate from the decomposition and linear
independence is the same as the proof for the nullspace
basis.

2) Nullspace of E: From the above, tree-cycle de-
composition we can write a basis for the nullspace as

c=[4

Note that each column of this matrix corresponds to trav-
eling around a cycle: the first part through the spanning
tree (the particular column of C) and the second part
back along the edge not in the spanning tree. Intuitively,
this is consistent with EFz = 0 describing flows where
mass is conserved, ie. cyclic flows. We can also prove

Basis
cycles

@) O O

Fig. 14: Tllustrating cycle basis

Linear
combinations
of cycles

Fig. 15: Illustrating linear combinations of cycles

concisely that C is a basis.

LININD: Cz=0= [Cﬂ - {8] —z=0

!/
SPAN: Ez=0= F[I C] [5,,} =0

=22 =-Ct' =z= {_CI] (-2

where the beginning the second line depends on the
columns of F' being linearly independent.

We note that the above decomposition gives a canon-
ical basis for the nullspace of the incidence matrix that
gives the cycle space of the graph. Specifically, the
columns of the matrix

form a basis for the cycle space. A canonical orthonor-
malization of this basis is given by

c(cre)~? = {_CI] (cTC+1)71/?

_[eeTc + 1712

| —(CcTCc+ 1)
Note that another option for orthonormalizing C would
be to do Gram-Schmidt on the columns, ie. perform a
QR-decomposition on C.

Connected
Component Values O\
O @)

A4

AVANM

Fig. 16: Linear combinations of rows of E7

Matrix: Cycle Indicator Matrix

C c Rl
Ex:
< Cycles —
1/3 0 0
1/3 1/3 0| 1
C= 0 1/3 1/2 Edfes
1/3 0 0
0 1/3 1/2

Properties: Column stochastic

3) Nullspace of ET: The co-domain intuitively is the
space of values on the nodes. The equation v E gives
the difference between values along edges and thus the
nullspace is the set of equal shifts among all the elements
in a connected component. A basis is given by the matrix

]_T, .’]_T])
—_——

XNe

— bikdiag([

where the constant vectors 17 are have the length
corresponding to connected components of the graph.

4) Range of E: The range of F is the space of relative
values on the nodes in each connected component. For
a single connected component it is not surprising that
a spanning tree should define a basis for the range;
defining the difference along edges in a spanning tree
is sufficient to fix the differences in the values between
the nodes. Algebraically, we see that a spanning forest
incidence matrix spans the range immediately from
the tree-cycle decomposition. We also note that linear
independence can be shown using the the transformation
given in Appendix XXX of the form F' = FW. This
new basis is equivalent to measuring difference in edges
from a particular root node as illustrated in Figure XXX.
Depending on context both of these decompositions can
be useful.

Relative
Node Differences

ﬂ}i|é;|"'7lc
@

/I
Fig. 17: Linear combinations of rows of E”

IV. LAPLACIAN/DEGREE/ADJACENCY

One of the shape matrices associated with the inci-
dence matrix EET is called the graph Laplacian and
is fundamental in algebraic graph theory L = EET €
RISI*ISI Spectral graph theory studies the eigenstructure
of the Laplacian and it’s relation to properties of the
graph. Here we only note that the square-root of the
Laplacian L2 = (EET)?2 is positive semi-definite shape
matrix of the incidence matrix and thus it’s eigenvalues
are the singular values of the incidence matrix and the
eigenvectors of the Laplacian are the left-singular vectors
of E. Explicitly we have that if L has EVD given below,
then the SVD of F is given by

L=EET=U [22 0} ur,

_lZ Olyr
* o peufs

0 0

where U is an orthonormal basis of eigenvectors for the
Laplacian and V is an orthonormal basis given by

_ynT _

v [~V [FUTES _[-UTE[L O] -
—_yrT _ v T

where V" completes a basis for the domain with
components in the nullspace of E. This can be taken
to be any orthonormal basis for the cycle space.

The intuition for the columns of U is vibration modes
of the graph and the rows of UT E are the resulting edge
tensions from the vibration modes.

Matrix: Graph Laplacian

L=FEET =D — AeRISIXISI

Ex:
5 0 0 0 O o 1 1 2 1
o 2 0 0 o0 10 1 0 o0
L=1]o 0o 3 0 ofl—|1 1 0o 1 o0
o 0 0 5 0 2 0 1 1 1
o 0o o0 o0 2 10 0 1 0
D A
5 -1 -1 -2 -1
a4 2 a1 o0 0
=]1 1 3 1 o0
2 0 -1 4 -
10 0 -1 2f
Properties: PSD, rank: |S| — n.
EVD/SVD:
Eigen-
values 0’ ’0 <)\1 S)‘\S|—nc
——
connected
components

V. FLOW CONSERVATION CONSTRAINTS

Given an edge flow z, the flow through the nodes on
the graph is given by p = E;x = E,z. A constraint of
the form Fx = FE,r — F;x = 0 represents conservation
of flow on the edges of the graph and thus the nullspace
of E is closely related to the cycles of the graph. Let ¢ C
& refer to a cycle on the directed graph and let C C 2¢
be the set of all cycles on the graph. Let C € RI€IXIC]
be a matrix indicating which edges are in which cycles
(scaled by each cycle length).

ife€ec

1

= { lel
€] e {0 otherwise %
where |c| is the length of cycle c¢. Note that for a fully
connected graph, only |£] — |S| — 1 cycles need be
enumerated in order to span the nullspace of E (by the
rank-nullity theorem). Given a flow distribution on the
cycles of a graph 2z €]R‘_El, the resulting flow distribution

on the edges of the graph is given by =z = Cz.
Note that E;, FE,, and C are all column stochastic

1TE;, =17, 1TE, =17, 1Tc =17 ()

which results in mass conservation between state flows,
edge flows, and cycle flows

lTp =1TE 2 =1"TEx=1"2=1"7C2 =172

Steady state flow of mass m = 1 on a graph can be
represented by the constraints.

X:{IERW ’on:Eia:, 1T:E:1, :CZO}

:{xGng‘ ’EZ’:O, CEEAV;‘}

If we enumerate the cycles of the graph, we can
reparametrize this set as

X:{xEngl ’x:Cz, 172=1, z>0, zERlc‘}
:{xengl ’x:Cz, zEAM}:CA

A. Path Flows

1) Source-Sinks: A path or route is a set of edges that
go from a source to a sink node. Source and sink vectors
Si, S, € R/S! indicate the source and sink nodes

1 ;s is source 1 ;sissink
[SO]S - {0 ; 0.W. ’ [Si]s - {0 ; ’

0.W.
and we can also define a source-sink vector S = S; —
S, € RISl

—1 ;s is source
[S],=4 1 ;sissink ,
0 ; ow.

Note that the vector S is the same as an indicator vector
for an edge from the source to the sink.

We will denote a set of routes as R C 2¢ and r €
R. We often represent a set of routes as columns of an
indicator matrix RI€I*IRI

ml -,

It is useful to consider how a route indicator vector
interacts with the incidence matrix E. Specifically, if R,
is a route indicator vector (a column of R) then we have

ER, =)

ecr

;ifeer
; otherwise

E|6 [Rr} —-5
|)

as illustrated in Figure XXX. Intuitively, flow along
a route from node s to s’ is the same (from a mass
conversation perspective) as flow along an edge directly
between those node.

2) Route vs. Cycle Flows: Note that here we can
construct cycle flows from route flows and vice versa
as illustrated in Figure XXX.

The set of flows between a source and a sink can be
represented using an incidence matrix

X:{mengl‘E:c:Sm, :1320}

Fig. 18: Illustrating cycles as differences between routes

A SA
A A

Fig. 19: Tllustrating adding cycles to routes to produce
new routes

We can also represent this set by enumerating the routes
X:{IEngl ':c:RZ—i—Cz’, 172 =m, 9:20}

For these representations to be the same set we only
need R to have at least one route and C must span the
nullspace of the incidence matrix. Other route flows can
then be represented by combinations of the base route
and cycle flows as illustrated in the Figure XXX.

Note here it is important that we don’t enforce that
z > 0. In some contexts, we may also want to represent a
set of routes as a convex combination of vertices defined
by routes

X:{xeR'” 'x:Rz+Cz’, 172 =m, xZO}

Note that in general these representations are not the
same most obviously in that the first set is compact and
the second set is not. In general, if we are to use the
vertex presentation, the matrix R must enumerate as
many routes as we want to consider. For any network
routing problem of substantial size the number of routes
|R| is prohibitively large and the incidence matrix rep-
resentation should be used. This vertex representation is
commonly used in many routing game problems and can
be quite useful for small scale path studies and counter-
examples.

Fig. 20: Illustration of set of route flows.

Fig. 21: Illustration of relationships between route flows
and cycle flows.

Fig. 22: Illustration of set of cycles .

Example

We give a

We give a geometric illustration of these algebraic
graph theory objects for the fully connected graph on
three states, |S| = 3. |€|] = 9. The incidence matrices
are given by

Eo = [Eol E02 EOS]
where

Eo1 = 0117, Epp = 6213, Ep3 = 6513,

Ei=1"®I3=[Eqy Ei Es]
where
Ejy=FEyp=E3=13

and the cycle indicator matrix is given by

1 0 o0 0 0 0 0 0
0o 0 o0 1/2 0 0 1/3 0
0o 0 o 0 0 1/2 0 1/3
o 0 o0 1/2 0 0 0 1/3

c=1]0o 1 o 0 0 0 0 0
0o 0 o 0 1/2 0 1/3 0
0o 0 o 0 0 1/2 1/3 0
0o 0 o 0 1/2 0 0 1/3
0o o0 1 0 0 0 0 0

The graph structure, space of state flows, cycle struc-
ture, and columns of F,, F/;, and FE; are all illustrated in
Fig. 2?. The space of edge flows and CA are illustrated
in Fig. 22.

VI. SHORTEST-PATH OPTIMIZATION

Given the above mass conversation constraints, we can
formulate several linear programs to solve for shortest
path type problems. We note that these formulations
may not be the most efficient in practice for these type
problems but simply conceptually have merit as well.

In order to formulate the appropriate optimization
problem, we define a vector of costs associated with each
edge in the graph ¢ € RI®I. The cost associated with a
particular route » € R can be computed as the quantity
(TR,.. Given the above description of the space of edge
flows, we can frame the given optimization problem as

If we enumerate all possible routes between a source
and a sink in a routing matrix R then we can frame the
shortest path problem as the optimization problem by
solving the linear program as

{

Here z € RE‘ is the mass distribution over the the set of
routes and 'R is vector of rewards for each route. This
optimization problem is illustrated in the Figure XXX.

max ¢TRz
z

172 =1, 220}

10

Optimal vertex Optimal edge

(gener

Projection of
fi T — T
2 (("x) =t

(non-generic)

Optimal

Fig. 23: Primal linear programming problem illustration.

The dual formulation of this problem is given by

{ j

where the dual variables are A € R for the equality
constraint and v € RE‘ for the inequality constraint.
A is lower bound on the minimum travel cost and v,
is the inefficieny of the route r. Intuitively, solving the
dual optimization problem can be pictured as pulling A
up as high as possible while keeping v > 0 as shown
in Fig. ??. Optimality is guaranteed by complementary
slackness vz, = 0, ie. no mass chooses an inefficient
route, Since the overall reward is a linear function
of the route distributions and the set of steady-state
distributions is characterized by a polytope as discussed
above. Since this is an LP on, a single route is purely
optimal (if not uniquely optimal). Geometrically this
corresponds to that a constant cost vector ¢ in general
points into a vertex; and if it points precisely into a face
or edge any distribution of mass over that face (including
all mass on any vertex) has the same cost.

Note that while conceptually pleasing this optimiza-
tion, enumerating the routing matrix is wildly inefficient.

rg\lin A AT =R+ I/T, vT>0
W

A. State Formulation

Alternatively, we can characterize the feasible set of
routes using the incidence matrix constraint given above.

{

The dual problem for this formulation is given by

max Tz
Y

‘Ex:Sm, 1Tx:1, x20}

min A | AT =T + 07 (E, - E) +u”, 7 >0

i j

The dual variable v € RIS! represents a value function
on each state that encodes the minimum distance from

that node to the destination. u € Rl_f‘ represents the
inefficiency of taking a particular edge. The optimum
can be found by maximizing the travel cost as much
as possible while ensuring that each edge is either
optimal or suboptimal, ie. have a positive inefficiency.
At optimum, the complementary slackness constraint
Yalta = 0 ensures that no suboptimal edges are chosen
and all mass travels down the fastest route.

Constraint Set: Cycle Flows X

(B; — Eo)z =0, 172 =m, x>0
|\ — ~—— ——
Local mass Global mass Mass pos.

conserve. conserve

Remark 1. The constraint above can be rewritten

element-wise as

3)

where edge e runs from state s to state s'. Summing up
this condition along a route, we see that the values at
the nodes cancel out and we’re left with the equation

Zﬁe:vo—vd

eer

Us:£e+vs’+ua

In matrix form this is simply given by right multiplying
the constraint by a route indicator vector ER, = Sm
and at 1Ty =1, y > 0) gives

(TR, =vTER, + 'R,
=vl'Sm+ 'R,

This relationship is illustrated in Fig. ??. Note here is
determined by the relative difference between the value
at the origin destination and the route inefficiency is
W' R,.. This last term is O for optimal routes.

B. Cycle Flow Optimization

We note a modified of this problem that solves for
flows on routes. This problem is slightly less useful;
however it has deep connections with a linear pro-
gramming formulation of Markov decision processes
presented in part 2 of this paper. It also has some subtle
yet interesting differences from the routing problem
shown above.

REFERENCES

[1] T. Wang, M. Bowling, and D. Schuurmans, “Dual representations
for dynamic programming and reinforcement learning,” in 2007
1IEEE International Symposium on Approximate Dynamic Pro-
gramming and Reinforcement Learning. 1EEE, 2007, pp. 44-51.

[2] M. L. Puterman, Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

11

Optlf?lal [7] Inefficiency
Solution V3 B Reward
Inefficient

edge...

V4

)

Inefficient
edge...

V2

Optimal
paths

Fig. 24: Shortest path optimization problem (dual ver-
sion)

