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Abstract—This tutorial paper discusses linear inequality
and polytope visualizations in terms of matrix column
and row geometry. Basic visualizations and relationships to
affine/half-spaces are discussed in both contexts. Particular
focus is then given to slack variable representations

I. INTRODUCTION

Visualizing matrix geometry is at the heart of develop-
ing spatial intuition for linear algebra and sets the stage
for visualization of many vector related topics in modern
engineering such as optimization and machine learning.

A matrix is a block of numbers used to represent a lin-
ear transformation between vector spaces. Definition of a
matrix immediately defines both “columns” and “rows”
of a matrix which have distinct interpretations relative to
the geometry of the linear transformation. In this paper,
we seek to show how the geometry of the columns relates
to the structure of the linear map. The spatial intuition
we will develop will have countless applications in the
theory of linear equations, optimization, and other fields.

In the first part of the paper introduces matrix column
geometry; each column of a matrix defines where the
standard basis vectors (and thus the axes) in the domain
map to in the co-domain. Basic examples and intuition
are developed for matrix-vector multiplication and also
matrix-matrix multiplication.

The bulk of the paper is then divided into two sec-
tions: one visualizing co-domain sets and one visualiz-
ing domain sets. In the co-domain section, images of
basic domain sets are discussed along with the range
and adjoint nullspace. Particular focus is then given to
image representations of affine spaces. In the domain
section, basic pre-images are discussed and then both
the nullspace and adjoint range are each given lengthy
treatment. Finally, pre-image representation of affine
spaces are discussed at length.

We note that this paper assumes familiarity with the
notation and vector visualization techniques presented in
the following monograph.

e Vector visualizations

This paper is also meant to be part 1 of two part series;
the second paper discusses matrix row geometry along
a parallel track.!
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A. Inequality Column Geometry

The inequality version of the above constraints can
be visualized in several ways. The most immediate and
natural is to visualize the set on one side of the affine
constraints given. Specifically for th 2 x 2 case given
above, we give the image a
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and preimage of inequality sets which are often more
useful.
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1) Slack Variable Representations: The general form
for a polytope is given by
{$|A$=b, Cmgd}

Often in practice, inequality constraints are dealt with
analytically and in algorithms by adding slack variables
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s € R™. The original inequality constraint is then
written as

{z|Az=b, Cx+s=d, s>0}

This has the benefit of ”simplifying” the inequality part
of the constraint to the form s > 0 at the cost of
adding an extra affine constraint. This slack variable
representation can be written in matrix form as
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Geometrically, slack variables represent an arbitrary
inequality of the form Cx < d as the intersection of an
affine constraint C'z + s = d with the positive orthant
(in s) s > 0. Assuming the matrix A is fat) the matrix
A O]

AI{C I

will be fat and thus have a non-trivial nullspace re-
gardless of the shape of C. If C is a fat matrix then,
the inequality constraint can (likely) be satisfied with
equality, ie. Cz = d, even with s = 0 and there may be
a subspace of solutions as well (defined by the nullspace
of C). If, however, C' is tall, some non-zero slack s will
be necessary to satisfy C'z 4+ s = d.

A discussion of the nullspace of M is fruitful. We
first consider the bottom rows [C' I|. Taking the second
set of columns (the identity block) to be a basis for the
range space (which clearly it is), we get that elements
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in the nullspace of these rows can be written as
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Here the vector on the right should indicate an arbitrary
linear combination but the identity rows at the beginning
indicate it will be . We now consider hte first rows
Az = 0. Taking a basis for the nullspace of A given in
the matrix N, we then have that x = Nz and therefore
the above equation becomes.
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Note that this is the same characterization we would

have gotten if we had first plugged in = Nz, defined
solutions to the equation CNz +s =10
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and then mapped this set back into the (z,s) space
instead of the (z, s) space

z| [N O I | N
s| —|o I||-cN|*T |-CN|~
If we compute a basis for the nullspace of A and
rewrite the affine constraint to have the form in it’s

nullspace form (x = Nz + z() then we can rewrite this
as the image of a constraint on the variable z

{z | C’NZSJ}



where d = d — Cz or in slack variable form as
{z| Az =b, CNz+s=d, s >0}

We now give several low dimensional examples of this
construction that are illustrative. Note the dimensions of
the matrices in each each case.

We start with the most basic scalar case where C' €
R*! for equations of the form

61I1+81:d1, S1 ZO

s where (1, s1) € R?. Note that the inequality constraint
defines a portion of R as illustrated in the figure below.
The slack variable constraint relaxes the set to the
(x1,s1) space R2. The original inequality is now the
projection of this relaxed set onto the x1 coordinate. This
relationship is illustrated in the figure below.
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Note here that the dimension of the original inequality
and the relaxed set are the same despite the fact that
the second is in a larger ambient space. Note also the
slack variable representatino of the set is the line s =
—cy21 + dy in the (z1, s1) intersected with the positive
half-space s; > 0. The slope of the line here is given
—c;. Note also that the affine space is orthogonal to the
vector [ 1 — ¢; | which indeed forms a basis for the
nullspace of the constraint matrix [ c1 1 ] The value d;
shifts the affine space horizontally along the x; axis.

We now proceed to slightly richer examples. Specifi-
cally, we consider two of the most basic examples where
C is not square. We start with the case where C' is fat;
C = [c1 2] € R and d; € R. In this case the
constraints can be represented as

[01 02] [2] +s51=d4

Here 2 € R? is a 2D vector with one constraint.
Technically, the “column” geometry of C' should really
be expressed on the individual number line. However,
as per the discussion above, we can expand the points
on the number line with an extra dimension in order to

see the pre-image better. The set Cxz = d is a 1D affine
space shown in the image below. Note that since C' is
fat there is always a solution to the equality constraint;
indeed there is one degree of freedom provided by the
nullspace of C. Note the intercepts at 1 = dy/c; and
dy/co = xo and that the affine space is orthogonal to
the vector [cl 02} as expected. Adding a slack variable
increases the ambient dimension to 3D and the set is
now expressed as the affine space given above intersected
with the half space s; > 0. Visually, we can think about
the half space tilting up from the x-plane through the
intercept s1 = dj.
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We now proceed to the case where C is tall; C' €
R2*! In this case x = x; is simply a 1D variable and
the constraints provide two inequality constraints on the
same variable. Often only one of them will be relevant.
For example, take ¢c; = c; =1 and d; =1 and ds = 2.
In this case the constraints become 7 < 1 and z1 < 2.
Only the first constraint here is relevant. Algebraically,
this corresponds to the fact that since C' is tall, there
may not be a solution to the equality Cx = d. Here the
slack variables are critical for the constraint Cx+s = d
to be satisfied with equality as the slack variables make
up any “slack” between a row of C'x and that element
of d. The geometry of this slack is illustrated in the
figure below. The inequality representation in the domain
is then represented on the right. When we add in the
slack variables, the space expands to R3. Unlike before
we added one constraint (and thus one slack variable
dimension) to a two dimension space, here we add
two slack variable dimensions to a one dimensional
space. The affine space has a 1D nullspace spanned by
-1 « CQ}T. The feasible set is the intersection of
this 1D subspace with the orthant s = (s1, s2) > 0. Note
here some of the intercepts. If 1 = 0, then s = d. There
is no solution where s = 0; however when one of the
inequality constraints is met we can set that element of
s equal to 0.
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We lastly turn to the case where C' € R2*?

Here the original variables are 2D = € R? and two
constraints correspond to two slack variables s € R2.
The slack variables lift the original inequality set to the
intersection between the orthant s > 0 and the affine
space defined by the matrix [C 1 ] € R?*4, For a given
linear combination of the columns of C' (defined by x)
the slack variables make up the difference to the point
d as shown in this figure.
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Since C is invertible, if x = C~1d, then s = 0, ie.
no slack variables are needed since both inequalities are
satisfied with equality.
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If x = 0, then the constraints must be satisfied only
with slack variables and s = d.
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Finally, if we let

! —1 0 " _ =1 dl
=C {dJ, ' =C {0},

then Cxz’ satisfies the first inequality and the slack
variable must make up the second constraint, ie. so = ds
and Cz” satisfies the second inequality and the slack
variable must make up the slack in the first constraint
ie. second constraint, ie. s{ = dj.
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Each of these points (in the domain)

T 0 x) xf

To 0 xh xh
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and their images in the co-domain are illustrated in
Figure XXX. Note this space is 4D and thus difficult
to visualize. The vertical plane is the first two coordi-
nates (the x-coordinates). The slack variable axes are
orthogonal to both the = coordinates and each other tho
this is difficult to visualize. The affine space is a 2D
subspace and the points given above are actually the
corners of a parallelogram in this 2D space. The sides of
the parallelogram are defined by the differences of the
corners and provide a basis for the nullspace which can
be written in the columns of a 4 X 2 matrix

0—dy di—di|  |—-di 0
do—dos 0—ds 0 —dy

Note here that by definition we have that

xp x| _|d1 0
C[xg y| |0 do



From this constructions we can write [m' :v”} =
C~'dg(d) and
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whose columns are simply (linearly independent) linear
combinations of the columnns of the matrix /N which is
the natural basis we would construct from our discussion
of nullspaces above. We can also show that this set is
indeed a parallelogram (and thus all four points lie in the
same 2D space by adding the two sides to one corner to
get the across corner. Explicitly, we know that Cx = d =
Cx’ + Cz” and it follows that = z’ + z”. Therefore
we have that

0 x} xf x1
0 xh zy | |
di| T l=a | T o | T o
da 0 —dy 0

Remark 1. These slack variable examples are subtle
and

II. Row GEOMETRY

Defining columns of a matrix inevitably defines rows
and thus offers another natural geometry perspective on
matrices. Here we represent a matrix in the form

AT
- AT -
A= :
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- AT _
Multiplying this matrix by a vector Ax takes the inner
product of the vector with each row
AT AT
- A7 - | Ajx
Az = : :
AT AT
— AT | L ATz
Inner products naturally encode the idea of projection
and thus loosely speaking we are can determine the
coordinate of the output vector Ax by “projecting” x
onto each row. This process can be visualized using the
various innner product visualizations presented earlier.
We already discussed the linear combination inner prod-
uct visualization method for this in our discussion of
column geometry (since it is naturally leveraging column
geometry to see inner products of rows). Here we will
focus the bulk of our efforts on visualizing these inner
products when the rows are presented as vectors in the
domain, ie. using the projection method”.

A. Set Transformations

1) Image of Domain Sets:
2) Pre-image of Co-Domain Sets:

B. Subspace Geometry

Subspaces can be represented algebraically as the
nullspace of a matrix or as the range of matrix. For a
matrix A € R™*" with rank k, we have

{xER"‘szo}
{xER"|x=Nz, zeRk}

Nullspace
representation

Range space
representation

where N € R™*F forms a basis for the nullspace of
A. There are many methods for computing the basis N
such as Gaussian elimination or singular value decom-
position (see XXX for details). We sketch the details for
one method as it will be critical in understanding the
nullspace relative to the column geometry of A. If we
select k linearly independent columns of A (wlog assume
they are the first k& columns) we can write A = [ A" A”]
with A’ € R™** and A" containing the remaining n — k
columns. Since A has rank k, we can write each column
of A” as linear combinations of the columns of A4’, ie.
A" = A'B for some matrix B € R¥*"~k_We then have
that A = A’ [I B]. We can see immediately then that if

=

then AN = 0. With a little more work, we can show
that the columns of N form a basis for the nullspace.
The identity block proves the linear independence of the
columns. We can also show explicitly that any element
in the nullspace of A is in the span of N. This fact
relies on the linear independence of the columns of A’.
Explicitly these two proofs are given by

LININD: Nz=0= Hﬂ = [8} =2=0

!/

SPAN: Az =0= A'[I B] [j,,] =0

=1 =-B2' =zx= {_BI] (-z'")

where the beginning the second line depends on the
columns of A’ being linearly independent. The geometry

A subspace

Given these

The geometry of this construction is

There are two natural representations of subspaces:
the affine representation and

1) Row Geometry: A subspace ahs tw
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