
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/362626122

Visual Modeling System for Optimization-Based Real-Time Trajectory Planning

for Autonomous Aerial Drones

Conference Paper · March 2022

DOI: 10.1109/AERO53065.2022.9843495

CITATIONS

3
READS

61

7 authors, including:

Skye Mceowen

University of Washington Seattle

10 PUBLICATIONS 53 CITATIONS

SEE PROFILE

Behçet Açıkmeşe

University of Washington Seattle

264 PUBLICATIONS 5,297 CITATIONS

SEE PROFILE

All content following this page was uploaded by Skye Mceowen on 07 February 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/362626122_Visual_Modeling_System_for_Optimization-Based_Real-Time_Trajectory_Planning_for_Autonomous_Aerial_Drones?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/362626122_Visual_Modeling_System_for_Optimization-Based_Real-Time_Trajectory_Planning_for_Autonomous_Aerial_Drones?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Skye-Mceowen?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Skye-Mceowen?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Washington_Seattle?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Skye-Mceowen?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Behcet-Acikmese?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Behcet-Acikmese?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Washington_Seattle?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Behcet-Acikmese?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Skye-Mceowen?enrichId=rgreq-ba5bc83f40775f1900bcb8fb001e0d65-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYyNjEyMjtBUzoxMTQzMTI4MTExODU5NDE2MEAxNjc1ODA1OTI1MDg5&el=1_x_10&_esc=publicationCoverPdf

Visual Modeling System for Optimization-Based
Real-Time Trajectory Planning for Autonomous Aerial

Drones
Skye Mceowen, Daniel Sullivan, Oliver Sheridan, Dan Calderone, and Behçet Açıkmeşe

Department of Aeronautics and Astronautics
University of Washington
Seattle, WA 98105, USA

skye95@uw.edu
Benjamin Chasnov

Department of Electrical and Computer Engineering
University of Washington
Seattle, WA 98105, USA

bchasnov@uw.edu

Abstract—In this paper, we present a visual modeling system
to enable users to seamlessly describe the constraints of tra-
jectory planning problems for autonomous aerial drones. The
proposed modeling system comes with an intuitive GUI-based
interface that enables the user to specify trajectory objectives,
add and remove motion constraints, and update the constraint
parameters in real-time. The interface algorithm acts as a high-
level parser to convert graphically specified constraints into a
standard form of the underlying optimal control problem. Then
a sequence of convex optimization problems, convex subprob-
lems, are generated whose solutions will converge to a solution
of the trajectory planning problem. This convex optimization
based method is referred to as successive convexification (SCvx)
[1]. Beneath the interface, there is another low-level layer of
problem parsing, which aims to model each convex subproblem
as a Second Order Cone Programming (SOCP) problem in a
standard form. Once each SOCP is formulated in this standard
form, it can be passed to our in-house developed primal-dual
interior point method (IPM) SOCP solver [2, 3] to obtain a
solution for each convex subproblem within SCvx. This paper
is aimed to describe the functional architecture of the visual
modeling system and its core algorithms, and also presents some
illustrative flight experiments.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. BACKGROUND . 2
3. VISUAL MODELING SYSTEM . 4
4. HIGH-LEVEL AND LOW-LEVEL PARSERS 6
5. EXPERIMENTAL DEMONSTRATIONS 6
6. CONCLUSION & FUTURE WORK 7
REFERENCES . 8

1. INTRODUCTION
Optimization-based trajectory planning has become a crucial
part of many autonomous aerospace vehicles [4–7]. Research
and tools for optimization-based trajectory planning utilizing
successive solutions to convex optimization subproblems in
order to refine trajectories have found widespread use for
aerospace applications [8–18]. Specifically, the framework
of successive convexification (SCvx) has been developed
as a real-time methodology that has efficient convergence

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

(a) Real-time visual modeling system for
optimization-based trajectory planning of
indoor and outdoor flights.

(b) Custom quadrotor.

(c) Motion capture and
ground control system.

Figure 1: A user of the visual modeling system specifies relevant constraints
on a physics-first problem, shown in (a). These specifications are translated
into meaningful constraints on the optimization problem that generates
dynamically feasible trajectories for the vehicle pictured in (b). The vehi-
cle’s trajectory can be updated mid-flight as mission specifications change,
enabling real-time decision-making for highly dynamic scenarios. (c) Our
lab setup allows for rapid prototyping and evaluation of control and planning
algorithms, and has proven to be indispensable for system identification and
tuning the parameters associated with the optimizers.

properties [19,20]. This framework has proven to be effective
in trajectory planning with applications to rocket landing and
quadrotor trajectory planning. However, there is much room
for improvement in the realm of user transparency. Histor-
ically, implementing SCvx requires an extensive amount of
analytical work to be done a priori in order to formulate
a nonlinear optimal control problem, which is subsequently
reformulated as a sequence of convex subproblems. Before
implementation, a discretization scheme must be determined
and applied to set up the convex subproblems. This analytical
process takes time, and requires an expert level of knowledge
of the theory behind these methods.

However, real-world trajectory planning scenarios often
change rapidly, requiring modification of trajectories in real-

1

time. Additionally, some scenarios are too ambiguous to
allow for a priori planning, which indicates that the process
of manually reformulating the problem can become inhibiting
to such complex, real-time scenarios. A trajectory planning
framework that gives the user a clear picture of the optimal
solutions as well as easy access to modify the problem param-
eters and recompute solutions would be a leap forward in the
practical use of optimization-based algorithms to aerospace
and robotic trajectory planning problems.

Graphical user interfaces (GUI’s) and natural user interfaces
(NUI’s) have been used for robotic planning in a variety of
contexts from drone control [21, 22] to manipulator control
[23]. Drone applications in general reduce user inputs to
waypoints and times and choose trajectories to optimize some
objective such as minimum time or minimum snap. Along
with graphical user interfaces, many techniques have focused
on controlling robots through speech, gestures, body position,
and haptic feedback in virtual or augmented reality envi-
ronment [24–27]. Applications include industrial trajectory
planning [28, 29] as well as performance [30] and videog-
raphy [31, 32]. Some applications allow for communication
of intention from the robot to the human as well [33, 34].
Higher level controllers have also been used to break down
robot tasks into simple building blocks that a user can choose
from [35–37].

In this paper, we present a touchscreen tablet based visual
modeling system that enables intuitive human interaction in
formulating trajectory planning (optimal control) problems
for aerial drones in real-time. The graphical interface al-
lows the user to quickly configure nonconvex constraints for
trajectory planning problems. For example, constraints may
include elliptical keep-out zones or polyhedrons, which can
either be placed by the user via the touch screen or anchored
to a beacon being tracked in the environment. This visual
modeling system then acts as a high-level parser, converting
the graphically-defined constraints placed on a map of the
flight space into a convex subproblem standard form that
can be passed to the SCvx algorithm software to generate a
trajectory satisfying these constraints. A sequence of these
convex subproblems are generated recursively and solved
numerically until convergence. Further details are provided
in Section 2. Beneath the visual interface lies a low-level
parser that models each convex subproblem as a Second
Order Cone Programming (SOCP) problem in a standard
form, as in Section 4. This parsing sequence is shown in
Fig. 2. The visual interface augments the user’s ability
to make high-level decisions, while relying on i) SCvx’s
strong theoretical convergence properties and ii) efficiency of
the numerical solution algorithms for convex optimization to
ensure trajectory solutions in real-time (Fig. 3).

2. BACKGROUND
To demonstrate live tracking of our real-time trajectory gen-
eration techniques, we employ our research group’s custom
aerial drone hardware and software test bed. These drones
track the trajectories as they are commanded by a user via the
visual modeling system interface over a WiFi network. These
key components and how they interact are discussed in the
sections below, with the visual modeling system running on a
handheld tablet serving as a keystone between them.

GNC Hardware and Software Architecture

Here we give a brief overview of the key building blocks of
the Guidance, Navigation and Control (GNC) software and

Interactive Display
Visual Modeling System

User Inputs

Way-points:

Solution

x(tk) = xk

Discretization & Convexification

x(t), t 2 T

Dynamics &  
control constraints

HIGH-LEVEL PARSER

�x+ = @f
@x�x + @f

@u�u

Non-convex
state constraints:

LOW-LEVEL PARSER

x 2 X

u 2 Uẋ = f(x, u, p)

Linearize:
Convex state  
constraints: ⇣k(t)T �r(t) � Rj � ⇠j , 8j, t

Convex control 
constraints:

Virtual control &  
trust regions: ||�r(t)||2  ⌧(t), 8t

umin  �(t)  umax

�(t) cos(✓max)  eT
3 u(t)

⌫j , 8j

||u(t)||2  �(t), 8t

||u(t)||2  �(t), 8t

Optimal 
trajectory:

SOLVER

IPM SOCP
Solver

SOCP
Standard Form

min
z

cT z

s.t. Ax = b

||u(t)||2  �(t), 8t

||Ciz + di||2  eT
i z + hi, 8i

||Ciz + di||2  eT
i z + hi, 8i

min
z

cT z

Az = b

8k

Figure 2: The layers of parsing to convert the user-defined graphical con-
straints in the visual optimization interface into a form that can be solved via
the SCvx algorithm to produce dynamically feasible solutions are depicted.
The Visual Modeling System Interactive Display and High-Level Parser are
the novel implementation contributions presented in this paper.

User
Visual

Modeling
System

Vehicle

constraints

visual feedback

trajectory

estimated state

Figure 3: The Visual Modeling System allows for the negotiation of
constraints with the user, while adhering to the constraints of the physical
vehicle. The user is in a closed-loop system with the vehicle. The state of
the vehicle is used as the initial boundary condition of the optimal control
problem, and the user receives feedback on the state and progress of the
mission objectives.

hardware infrastructure used to generate experimental results
in the Autonomous Controls Lab (ACL). The software and
hardware are broken into three distinct packages for vehi-
cle trajectory generation (guidance), vehicle state estimation
(navigation), and vehicle trajectory tracking (control) which
run on separate computers interfaced together via a WiFi
network. The control is performed on-board ACL’s custom-
built quadrotor platforms which run a flight software (FSW)
package written in-house in C++ on an Intel Edison SoC
clocked at 500MHz [38]. The vehicles employ high-order
feedback controllers that are outside of the scope of this
paper. To perform closed-loop tracking on-board the vehicle,
this FSW package ingests both the guidance trajectories and
vehicle navigation data over the WiFi network as they are
generated in real-time off-board. The indoor navigation is
performed using an OptiTrack motion-capture system which
supplies both position and attitude data at up to 180Hz with
a precision down to 4mm, by employing Prime17W and
Prime41 cameras. A custom navigation software package
also written in C++ takes estimated vehicle state data from

2

this camera system and sends it to both the vehicle FSW
for on-board closed-loop control as mentioned above, and to
the SCvx software package running on the visual modeling
system to generate real-time trajectories for the vehicle. For
outdoor applications, the navigation is conducted on-board
the vehicle’s flight computer using a GPS and magnetometer,
and an extended Kalman filter (EKF) for state estimation.
Figure 1 displays the custom quadrotor drone, our indoor
motion capture system, and a flight test at the outdoor flight
facility. Further details about the control systems and state
estimation are discussed in prior publications [38].

At the highest level, the trajectory generation is performed
in real-time with a novel visual modeling system software
package that combines the optimization-based technique of
successive convexification (SCvx) developed in the ACL [1]
with a graphical user interface (GUI) to allow streamlined
human-algorithm interaction on a Microsoft Surface tablet.

Successive Convexification Overview: Trajectory Generation
Guidance Algorithm

In this section, we summarize the mathematical formulation
of ACL’s SCvx optimization-based guidance used by the
visual modeling system to generate trajectories in real-time
that are linked to the aerial drone’s initial state.

Generalized Non-Convex Formulation—We consider optimal
control problems of the form:

min
u,p

J(x, u, p) (1a)

s.t. ẋ(t) = f(x(t), u(t), p), (1b)
x(t) ∈ X , u(t) ∈ U , (1c)
s(x(t), u(t), p) ≤ 0, (1d)
g(x(t), p) = 0 (1e)

where u(t) is a m-dimensional bounded control function,
x(t) is an n-dimensional state function, and p ∈ Rd is a
vector of parameters. The function f : Rn×Rm×Rd → Rn
is the vehicle dynamics, which is assumed to be at least
once continuously differentiable. Initial and final boundary
conditions are enforced by an affine constraints on x(0) and
x(tf). The convex state and control constraints are X , U and
the non-convex state and control constraints are captured by
function s : Rn × Rm × Rd → Rns , g : Rn × Rd → Rng .
The cost function J in the applications we study is typically
minimum fuel or minimum time formulations, though in
general any non-convex cost is supported. For the minimum
time formulation, time is considered as a parameter.

Modeling and Convexification—To solve optimization prob-
lems using convex optimization, we must remove non-
convexities and reframe problems as an SOCP problem [39].
The successive convexification framework involves several
strategies for dealing with non-convexities in the optimal
control formulation. Non-convex dynamics are linearized at
each iteration k = 1, 2, . . . around the current trajectory.

The real vehicle dynamics are six degree-of-freedom (6-DoF)
dynamics corresponding to the three translational compo-
nents and the three angular components of motion needed to
describe the position and orientation in space at any given
time. It is important to note that in reality the three trans-
lational degrees-of-freedom are coupled to the three angular
degrees-of-freedom. However, we demonstrate that trajecto-
ries generated assuming simplified three degree-of-freedom

(a) Lossless convexification (control con-
straint).

(b) Obstacle avoidance (state constraint).

(c) Slack variables for feasibility

Figure 4: Sources of non-convexity in the constraints of the optimal control
problem. (a) The non-convex minimum thrust condition (left) is convexified
by introducing an additional variable to the optimization problem (right).
(b) The non-convex ellipse keep-out zones are convexified by linearizing the
constraint to form convex half-plane constraints for each sample point along
the trajectory. (c) Illustration of how slack variables νj relax state constraints
based on weight relative to the rest of the objective function.

(3-DoF) translational dynamics, neglecting the angular com-
ponents, still produce dynamically feasible solutions that can
be tracked with high-performance within a subset of the vehi-
cle state space with respect to the orientation, rates, velocity
and acceleration. This is done by imposing constraints on
the state of the vehicle that the optimizer must adhere to
when seeking a solution. For example, a state constraint
might be enforced as a roll angle upper bound, or minimum
and maximum acceleration values, written mathematically as
an inequality constraint. In addition to dynamic and state
constraints, control constraints limit upper and lower bounds
of the control signal input used to actuate the vehicle along
the trajectory. For the 3-DoF optimization problem, the state
vector is given by x(t) = (r(t),v(t)) where r(t) and v(t) are
the position and velocity of the quadrotor, respectively.

Control constraints with minimum thrust vector and mini-
mum tilt angle bounds with the forms

0 < umin ≤ ||u(t)||2 ≤ umax, ||u(t)||2 cos(θmax) ≤ eT3 u(t)

3

may be convexified by adding a slack variable Γ(t)

0 < umin ≤ Γ(t) ≤ umax, ||u(t)||2 ≤ Γ(t),

Γ(t) cos(θmax) ≤ eT3 u(t)

without affecting the optimal solution. This lossless convexi-
fication is detailed in [38, 40].

Environmental constraints, represented by ellipsoidal keep-
out zones, are described by the nonconvex constraints,

sj = Rj − ||Hj(r(t)− pj)||2 ≤ 0. ∀j ∈ J

where Hj = HT
j � 0 determines the shape of the obstacle,

and Rj ≥ 0 determines the size, and J is a finite set of
obstacles. Unlike the control constraints, the convexification
of the environmental constraints must be re-computed at each
optimization iteration as the trajectory is adjusted. For each
time step t along the trajectory, each obstacle constraint is ap-
proximated by a half-space constraint defined by the tangent
plane of the obstacle. At each iteration k, the constraints for
obstacle j and time step t are given by

ξk,j +
[
ζk,j(t)

]T
δrk(t) ≥ Rj − νj , νj ≥ 0,

where

∆rk,j(t) , rk−1(t)− pj , δr
k(t) , rk(t)− rk−1(t)

ξk,j(t) , ‖Hj∆rk,j(t)‖2, ζk,j(t) ,
HT
j Hj∆rk,j(t)

‖Hj∆rk,j(t)‖2
Here rk(t) is the trajectory point at time t, rk−1(t) is that
point at the previous optimization iteration, ∆rk,j(t) is the
distance to the center of the j-th obstacle; δrk(t) is the update
to the position of rk(t). νj is a slack variable that allows
the constraints to be temporarily violated during trajectory
planning. Each νj term is heavily penalized in the objec-
tive function forcing the final trajectory outside of each of
the obstacles. Convexification of control lower bounds and
successive convexification of obstacles is illustrated in Fig.
4.

More complicated constraint geometries or those that are
time-dependent can be described using State-Triggered Con-
straints (STCs). An STC consists of a trigger condition and
a corresponding constraint [41]. These are constraints that
allow discrete logic to be integrated into a continuous opti-
mization framework, that are switched on or off depending
on the state of the vehicle. A common example is a hoop
constraint, which can be represented as the trigger of the
vehicle passing within an outer cylindrical corridor and the
constraint where the vehicle is forced to fly within an inner
cylindrical corridor. This can be generalized to any convex
state-based trigger and corresponding constraint.

Artificial Unboundedness—Between iterations, the optimizer
must make a discrete leap from one set of parameters and cor-
responding cost and another, described by δrk(t). However,
because each problem is obtained by linearizing the previous
iteration, it is important that the optimizer does not make too
large of a leap away from the region where the linearization
is valid. To solve for this, we introduce trust regions

‖δrk(t)‖2 ≤ τ(t), ∀t ∈ [0, tf]

which penalize large steps between iterations by adding the
penality term

∫ tf
0
τ(t)2 to the objective function.

Aerial Drone Optimization Problem

The objective function consists of either minimum time or
minimum fuel. Minimum fuel can either be constructed as
fixed-final time, where the time of arrival at the terminal state
constraint is fixed, or as free-final time where the time of
arrival at the terminal state constraint is also an optimization
variable. Minimum time is another way to formulate the
problem, where flight duration is itself the sole cost being
minimized.

For the first iteration, the problem must be initialized with a
trajectory to begin optimizing from; this is typically chosen
as a straight line, but can be chosen arbitrarily. At each
subsequent iteration k, the following convex optimization
problem is solved for the 3DoF quadrotor dynamics:

minimize
uk(t),Γk(t),τ(t)

w

∫ tf

0

(
Γk(t)

)2
dt+

∑
j∈J

νj + λ

∫ tf

0

τ(t)2

subject to:

rk(0) = ri, vk(0) = v0, uk(0) = ge3

rk(tf) = rf , vk(tf) = vf , uk(tf) = ge3

ṙk(t) = vk(t), v̇k(t) = uk(t)− ge3

0 < umin ≤ Γk(t) ≤ umax, ‖uk(t)‖2 ≤ Γk(t),

Γk(t) cos(θmax) ≤ eT3 u
k(t), ‖δrk(t)‖2 ≤ τ(t)

For all j ∈ J and for t ∈ [0, tf] :

ξk,j +
[
ζk,j(t)

]T
δrk(t) ≥Rj − νj , νj ≥ 0

where Hj � 0, Rj ≥ 0 and

∆rk,j(t) , rk−1(t)− pj , δrk(t) , rk(t)− rk−1(t),

ξk,j(t) , ‖Hj∆rk,j(t)‖2, ζk,j(t) ,
HT
j Hj∆rk,j(t)

‖Hj∆rk,j(t)‖2
.

Successive convexification is not guaranteed to achieve con-
vergence from any set of initializations, cost functions and
constraints. The convergence properties vary with the many
inputs, but we demonstrate this algorithm to run successfully
in real-time as a quadrotor moves throughout a flight space.
As the quadrotor moves fairly rapidly throughout the flight
space, any rare and temporary nonconvergence issues due
to local conditions are quickly replaced by a new feasible
solution at the vehicle’s next position [42, 43].

3. VISUAL MODELING SYSTEM
We describe the functional architecture of the visual mod-
eling system and its core algorithms, which enables intuitive
human interaction in formulating trajectory planning (optimal
control) problems for aerial drones in real-time. The interface
algorithms convert graphically specified constraints into a
standard form of the underlying optimal control problem.

4

Figure 5: An overview of the visual autonomy interface. Yellow diamonds are the vehicles’ current state, red circles are target destinations, and white numbered
circles are waypoints. The gray circles are obstacles and the gray polytope is a slow zone. Each vehicle, target, and obstacle can be tagged to a live tracker using
the pop-up window to be updated in real-time. The right panel provides an intuitive interface for non-expert users to update the constraints of the problem,
whereas the left panel provides an detailed interface for expert users to fine-tune the optimization algorithms.

Figure 6: The colors of trajectories represent different stages of execution. Under nominal conditions (yellow), no constraints are violated and the goal can be
reached. If the problem is infeasible (red), the users will be alerted on which parameters to adjust to regain feasibility. Once staged (green), the trajectory is
locked and is readied for execution (blue). Once completed, it returns to the nominal stage.

User Inputs

The graphical interface allows the user to quickly configure
nonconvex constraints for trajectory planning problems. For
example, constraints may include elliptical keep-out zones
or polyhedrons, which can either be placed on the map by
the user via the touch screen or anchored to a beacon being
tracked in the environment, as shown in Fig. 5. Problem pa-
rameters are updated both as the user defines constraints and
as the autonomous drone moves throughout the environment,
allowing relevant trajectories to be computed throughout the
duration of the flight.

Boundary Conditions—The simplest use case for the tablet
interface is defining initial and final conditions for a trajec-
tory. Users can place a variety of target destinations on the
map. One active target can be designated from a set of pre-
placed destinations for the aerial drone. The drone’s current
telemetry is used as the initial condition.

State and Control Constraints— The interface also allows
users to apply various constraints to the trajectory between
the initial and final condition. The user can create constraints
to avoid or keep-out zones by using an obstacle generation
tool. The “obstacle create” mode allows users to place
elliptical obstacles scaled according to the zoom level of
the map. The user can then use the default mode to rotate,
elongate, move, and duplicate obstacles by selecting the item
and using the graphical handles that appear. Users can also
place waypoints for the drone to pass through en route to

the final destination along the trajectory. Waypoints are
applied as hard positional constraints with no constraint on
acceleration or velocity. Fig. 5 features four obstacles with
dashed-line clearance zones and one waypoint, indicated by
the numbered white dot.

State-Triggered Constraints—Finally, users can impose state-
triggered constraints (STCs) which only trigger under certain
conditions. In the visual modeling interface, for example,
users can impose a “slow zone” on the map where the maxi-
mum velocity constraint is reduced. The slow zone region is
defined via the polygon and hyperplane creation tools. The
user either designates an entire halfspace region by placing
two points with the hyperplane creation tool, or alternatively
places a series of points defining the vertices of a polygon to
specify an isolated intersection of halfspaces. These shapes
can be moved or modified with graphical handles similar
to the elliptical obstacles, and hyperplane direction can by
flipped as well. Any vehicle within the intersection of these
zones would then be subject to the lower maximum velocity
constraint, which would then be passed to the low-level
parser. Fig. 5 demonstrates a slow-zone defined by the
boundaries of a user-created polygon.

Expert-User Optimization Parameters—While the high-level
parser currently only supports a predefined set of convexified
3-DoF dynamics for aerial drones, the graphical interface
provides options for expert users to fine tune various optimal
control problem parameters. A cohesive description of these
parameters is outside the scope of this paper. However,

5

examples include weighting values on the virtual control and
trust region elements of the cost function, as well as the
minimum and maximum bounds for vehicle acceleration.

Tablet Display

The visual interface reports a trajectory satisfying the con-
straints and parameters set by the user. This trajectory is
displayed along with indicators about the feasibility of the so-
lution. This overall status of constraints, obstacles, vehicles,
targets, waypoints, trajectory, and feasibility are displayed to
the user in an interactive format on the tablet screen. The
user can then issue commands based on this state, such as
uploading the trajectory to the vehicle if a feasible trajectory
is reported. On the tablet screen, the trajectory status and
vehicle position are continuously updated on the displayed
map. The user is in a closed-loop system with the vehicle
and optimizer (see Fig. 3), and can carefully operate and
monitor the scenarios in real-time. The autonomous interface
augments the user’s ability to make high-level decisions,
while relying on the optimizers strong theoretical guarantees.

Once the user selects a target for a vehicle, the GUI con-
tinuously runs SCvx at a rate of up to 10Hz to generate
trajectories using all the problem inputs [38]. The status
of the resulting trajectories is displayed using color codes
and feedback messages. The progression of color codes is
demonstrated in Fig. 6. Infeasible trajectories are displayed
in red and the offending input is presented in a message box.
Nominal trajectories are presented in yellow. Since these
trajectories are continuously updated, the user must stage
the trajectory of the currently selected drone to prevent it
from updating further and validate it is the desired trajectory.
The staged trajectory and associated vehicle are displayed in
green. The user then executes the staged trajectory, either
in simulation mode or transmitting it to the tagged vehicle.
The executing trajectory and drone is displayed in blue.
Depending on the application, the user may choose to lock
the trajectory until complete or change to a newly computed
trajectory on the fly.

4. HIGH-LEVEL AND LOW-LEVEL PARSERS
The visual modeling system acts as a high-level parser, con-
verting the graphically-defined constraints placed on a map of
the flight space into a convex subproblem standard form that
can be passed to the SCvx algorithm software to generate a
trajectory satisfying these constraints. A sequence of these
convex subproblems, are generated whose solutions will con-
verge to a solution of the trajectory planning problem. The
optimal control problem implemented here for minimum-fuel
or minimum time objectives for autonomous aerial drones is
discussed in detail in Section 2. Beneath the interface is a
low-level problem parser, which aims to model each convex
subproblem as an SOCP in a standard form. This relation
between the two layers of parsing is depicted in Fig. 2.

High-Level Parser: Convexification and Discretization

The high-level parser converts the nonconvex environmental
constraints into their locally convex approximations. These
convexified constraints are brought together with the vehicle
dynamics, the originally convex constraints, and the cost
function (assumed to be also convex) to form a standard
convex subproblem. The problem is initialized with a straight
line interpolation between the initial condition, waypoints,
and final condition. A sequence of these convex subproblems
is generated recursively and solved until convergence, where

each problem is convexified locally around the previous solu-
tion. The converged final solution achieves a locally optimal
solution to the original nonconvex optimal control problem.

Low-Level Parser and SOCP Solver

The low-level parser receives the convex subproblems from
the high-level parser, which then reformulates these convex
problems as a second-order cone programming (SOCP) prob-
lem in a standard form. Once each subproblem is expressed
in a standard form, they are passed to our in-house developed
primal-dual interior point method (IPM) solver to obtain a
solution [2, 3]. This custom IPM solver runs very efficiently
and therefore helps reduce overall algorithm run-time. Upon
convergence, the solver passes the trajectory solution back to
the visual modeling system for display to the user.

5. EXPERIMENTAL DEMONSTRATIONS
Experimental demonstrations were performed and are in-
tended as illustrative examples of the visual modeling in-
terface in action. Video footage and commentary for each
scenario presented in this section can be found on the Au-
tonomous Controls Laboratory website at the following link:

https://depts.washington.edu/uwacl/
media/aeroconf-2022-submission/

A snapshot is shown in Fig. 7, and the test scenarios are
described below.

Scenario 1: Trajectory Planning with Boundary Conditions
and Constraints

This scenario demonstrates simple trajectory with boundary
conditions and constraints. The user executes multiple trajec-
tories with a single vehicle and target in an obstacle course of
multiple elliptical obstacles and user-defined waypoints.

Scenario 2: Live Trajectory Replanning

This scenario highlights the iterative properties of SCvx and
shows the speed with which it can converge to a feasible so-
lution. The user successfully executes new trajectories while
the vehicle is mid-flight, seamlessly changing the course of
the vehicle.

Scenario 3: Free Final Time Implementation

This scenario demonstrates a free final time implementation,
where the final time is also an optimization variable instead of
a user-defined boundary constraint on the terminal condition
enforced on the vehicle. The user is able to modify the
problem type and optimization variables through the tablet
interface to successfully generate and execute minimum-time
trajectories.

Scenario 4: Slow Zones via State-Triggered Constraints

This example demonstrates state-triggered constraints (STCs)
in the form of user defined slow zones. The user creates a
series of planes to define a “slow-zone area”. While in this
area, the vehicle is constrained to a lower maximum velocity.
The user executes short duration trajectories to highlight the
effect of different velocity constraints.

Scenario 5: Quadrotor Tracking Performance

Scenario 5 shows the tracking error in SCvx-generated tra-
jectories. This example shows the difference between guid-

6

https://depts.washington.edu/uwacl/media/aeroconf-2022-submission/
https://depts.washington.edu/uwacl/media/aeroconf-2022-submission/

(a) Scenario 1: executing a trajectory with boundary
conditions and constraints.

(b) Scenario 2: mid-flight replanning of a trajectory in
real-time.

(c) Scenario 4: quadcopter enters a slow-zone, imple-
mented as a state-triggered constraint.

Figure 7: A snapshot of Scenario 1 presented in Section 5, executing
a trajectory with boundary conditions and constraints. Videos of these
scenarios are on the website provided.

ance and navigation telemetry for position, velocity, and
acceleration. Even when executing multiple trajectories in
rapid succession, the position error rarely exceeds 20cm.
The maximum position error is approximately 21.3cm, the
minimum error is 9.7cm, and the average position error is
17.6cm. The maximum velocity error is 45.0cm/s and the
maximum acceleration error is 1.395m/s2. This is displayed
in Fig. 8 and 9.

6. CONCLUSION & FUTURE WORK
There have been significant contributions in the area of suc-
cessive convexification over the last decade, and this form of
optimization-based automated trajectory planning will only
continue to become more common. However, methods to
abstract away the analytical problem formulation to allow

Figure 8: Scenario 5: Aerial drone tracking performance.

Figure 9: Scenario 5: Aerial drone tracking error.

a real-time feedback loop for high-level decision-making
have been largely absent from the literature. This visual
modeling system is a novel parsing interface that allows non-
expert users to interact with the physics-based problem at a
human level. It handles translating obstacles into mathemat-
ical constraints and communicating the resulting output in a
simple manner. This removes the analytical step for formu-
lating such optimization problems, incorporating users into a
continuously running automation feedback loop by allowing
users to add inputs to the problem and execute commands
based on the resulting output displayed on the interface. This
sort of continuous user integration is especially essential for
SCvx problems, since they can be solved quickly and provide
reliable guarantees.

Future work for the optimization interface includes exposing
the mathematical representation of the problem for the user.
Specifically, displaying the dual variables of the problem
would allow the user to know how strongly the vehicle is
pushing against a constraint and therefore influence the user’s
decision to change the constraint or allow more leeway. Other
problem formulation properties could also be exposed to
provide more control to the user. The “free final time” option
could be expanded upon to allow the user to choose any of the
problem parameters they wish to minimize. The user could
easily switch between minimizing fuel, time, or constraint
relaxation.

7

ACKNOWLEDGMENTS

Support for studying the convergence properties of the
successive convexification framework was provided by the
Office of Naval Research grants N00014-16-1-2877 and
N00014-16-1-3144.

REFERENCES
[1] M. Szmuk, B. Açıkmeşe, and A. W. Berning, “Succes-

sive convexification for fuel-optimal powered landing
with aerodynamic drag and non-convex constraints,” in
AIAA Guidance, Navigation, and Control Conference,
Autonomous Controls Laboratory, Dept. of Aeronautics
& Astronautics, University of Washington, Seattle, WA
98195, USA, January 2016.

[2] D. Dueri, B. Açıkmeşe, D. Scharf, , and M. Har-
ris, “Customized real-time interior-point methods for
onboard powered-descent guidance,” AIAA Journal of
Guidance, Control and Dynamics, vol. 30, no. 5, pp.
1353–1366, 2007.

[3] J. Peng, C. Roos, and T. Terlaky, “Self-regularity:
A new paradigm for primal-dual interior-point algo-
rithms,” 2001.

[4] J. Harpold and C. A. Graves, “Shuttle entry guidance,”
in Mission Planning and Analysis Division, NASA,
Houston, Texas, February 1979.

[5] X. Liu, P. Lu, and B. Pan, “Survey of Convex Opti-
mization for Aerospace Applications,” Astrodynamics,
vol. 1, no. 1, pp. 1–23, 2017.

[6] U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kay-
acan, and B. Açıkmeşe, “Model predictive control in
aerospace systems: Current state and opportunities,”
Journal of Guidance, Control, and Dynamics, vol. 40,
no. 7, pp. 1541–1566, 2017.

[7] L. Blackmore, “Autonomous precision landing of space
rockets,” in in Frontiers of Engineering: Reports on
Leading-Edge Engineering from the 2016 Symposium,
vol. 46, 2016, pp. 15–20.

[8] P. T. Boggs and J. W. Tolle, “Sequential quadratic
programming,” Acta numerica, vol. 4, pp. 1–51, 1995.

[9] B. Fares, D. Noll, and P. Apkarian, “Robust control via
sequential semidefinite programming,” SIAM Journal
on Control and Optimization, vol. 40, no. 6, pp. 1791–
1820, 2002.

[10] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Brad-
low, J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Mo-
tion planning with sequential convex optimization and
convex collision checking,” The International Journal
of Robotics Research, vol. 33, no. 9, pp. 1251–1270,
2014.

[11] R. Bonalli, B. Hérissé, and E. Trélat, “Optimal control
of endoatmospheric launch vehicle systems: Geometric
and computational issues,” IEEE Transactions on Auto-
matic Control, vol. 65, no. 6, pp. 2418–2433, 2019.

[12] J. Nocedal and S. J. Wright, “Sequential quadratic
programming,” Numerical optimization, pp. 529–562,
2006.

[13] P. E. Gill and E. Wong, “Sequential quadratic program-
ming methods,” in Mixed integer nonlinear program-
ming. Springer, 2012, pp. 147–224.

[14] X. Liu, Z. Shen, and P. Lu, “Entry trajectory optimiza-

tion by second-order cone programming,” Journal of
Guidance, Control and Dynamics, vol. 39, no. 2, 2016.

[15] Z. Wang and Y. Lu, “Improved sequential convex pro-
gramming algorithms for entry trajectory optimization,”
AIAA Journal of Spacecraft and Rockets, May 2020.

[16] M. Grant and S. Boyd, “CVX: Matlab software
for disciplined convex programming, version 2.1,”
http://cvxr.com/cvx, March 2014.

[17] B. Açıkmeşe and S. R. Ploen, “Convex programming
approach to powered descent guidance for Mars land-
ing,” AIAA Journal of Guidance, Control and Dynam-
ics, vol. 30, no. 5, pp. 1353–1366, 2007.

[18] L. Blackmore, B. Acikmese, and D. P. Scharf,
“Minimum-landing-error powered-descent guidance for
mars landing using convex optimization,” Journal
of Guidance, Control, and Dynamics, vol. 33,
no. 4, pp. 1161–1171, jul 2010. [Online]. Available:
https://doi.org/10.2514/1.47202

[19] M. Szmuk and B. A. Açıkmeşe, “Successive convexifi-
cation for 6-dof mars rocket powered landing with free-
final-time,” in AIAA Guidance, Navigation, and Control
Conference, Kissimmee, FL, USA, 2018, p. 0617.

[20] M. Szmuk, T. P. Reynolds, B. A. Açıkmeşe, M. Mehran,
and J. M. Carson III, “Successive convexification for
6-dof powered descent guidance with compound state-
triggered constraints,” in AIAA Guidance, Navigation,
and Control Conference, San Deigo, CAL, 2019, p.
0926.

[21] K. Virtanen, H. Ehtamo, T. Raivio, and R. P.
Hamalainen, “Viato-visual interactive aircraft trajectory
optimization,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 29,
no. 3, pp. 409–421, 1999.

[22] M. A. Rendón, F. F. Martins, and L. G. Ganimi, “A vi-
sual interface tool for development of quadrotor control
strategies,” Journal of Intelligent & Robotic Systems,
pp. 1–18, 2020.

[23] J. W. S. Chong, S. Ong, A. Y. Nee, and K. Youcef-
Youmi, “Robot programming using augmented real-
ity: An interactive method for planning collision-free
paths,” Robotics and Computer-Integrated Manufactur-
ing, vol. 25, no. 3, pp. 689–701, 2009.

[24] R. A. S. Fernandez, J. L. Sanchez-Lopez, C. Sampedro,
H. Bavle, M. Molina, and P. Campoy, “Natural user
interfaces for human-drone multi-modal interaction,” in
2016 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 2016, pp. 1013–1022.

[25] A. Sanna, F. Lamberti, G. Paravati, and F. Manuri, “A
kinect-based natural interface for quadrotor control,”
Entertainment Computing, vol. 4, no. 3, pp. 179–186,
2013.

[26] A. Mashood, H. Noura, I. Jawhar, and N. Mohamed,
“A gesture based kinect for quadrotor control,” in 2015
International Conference on Information and Commu-
nication Technology Research (ICTRC). IEEE, 2015,
pp. 298–301.

[27] G. Best and P. Moghadam, “An evaluation of multi-
modal user interface elements for tablet-based robot
teleoperation,” Proc. of ARAA ACRA, 2014.

[28] T. Pettersen, J. Pretlove, C. Skourup, T. Engedal, and
T. Lokstad, “Augmented reality for programming in-
dustrial robots,” in The Second IEEE and ACM Inter-

8

https://doi.org/10.2514/1.47202

national Symposium on Mixed and Augmented Reality,
2003. Proceedings. IEEE, 2003, pp. 319–320.

[29] M. Ostanin and A. Klimchik, “Interactive robot pro-
graming using mixed reality,” IFAC-PapersOnLine,
vol. 51, no. 22, pp. 50–55, 2018.

[30] M. El-Jiz and L. Rodrigues, “Trajectory planning and
control of a quadrotor choreography for real-time artist-
in-the-loop performances,” Unmanned Systems, vol. 6,
no. 01, pp. 1–13, 2018.

[31] N. Joubert, M. Roberts, A. Truong, F. Berthouzoz,
and P. Hanrahan, “An interactive tool for designing
quadrotor camera shots,” ACM Transactions on Graph-
ics (TOG), vol. 34, no. 6, pp. 1–11, 2015.

[32] C. Gebhardt and O. Hilliges, “Wyfiwyg: Investigating
effective user support in aerial videography,” arXiv
preprint arXiv:1801.05972, 2018.

[33] T. Chakraborti, S. Sreedharan, A. Kulkarni, and
S. Kambhampati, “Projection-aware task planning and
execution for human-in-the-loop operation of robots in
a mixed-reality workspace,” in 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 4476–4482.

[34] P. Milgram, S. Zhai, D. Drascic, and J. Grodski, “Ap-
plications of augmented reality for human-robot com-
munication,” in Proceedings of 1993 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS’93), vol. 3. IEEE, 1993, pp. 1467–1472.

[35] E. A. Cappo, A. Desai, N. Dehghani, A. Momeni,
and N. Michael, “Interactive online choreography for a
multi-quadrotor system.”

[36] P. Marion, M. Fallon, R. Deits, A. Valenzuela,
C. Pérez D’Arpino, G. Izatt, L. Manuelli, M. Antone,
H. Dai, T. Koolen, et al., “Director: A user interface
designed for robot operation with shared autonomy,”
Journal of Field Robotics, vol. 34, no. 2, pp. 262–280,
2017.

[37] C. Gebhardt, B. Hepp, T. Nägeli, S. Stevšić, and
O. Hilliges, “Airways: Optimization-based planning
of quadrotor trajectories according to high-level user
goals,” in Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, 2016, pp. 2508–
2519.

[38] M. Szmuk, C. A. Pascucci, D. Dueri, and B. Açıkmeşe,
“Convexification and real-time on-board optimization
for agile quad-rotor maneuvering and obstacle avoid-
ance,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Vancouver, Canada, Septem-
ber 2017.

[39] A. Domahidi, E. Chu, and S. Boyd, “Ecos: An socp
solver for embedded systems,” in European Control
Conference (ECC), Zurich, Switzerland, July 2013, pp.
3071–3076.

[40] M. Szmuk, C. A. Pascucci, and B. Açıkmeşe, “Real-
time quad-rotor path planning for mobile obstacle
avoidance using convex optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, Madrid, Spain, October 2018.

[41] M. Szmuk, D. Malyuta, T. P. Reynolds, M. S. Mceowen,
and B. Açıkmeşe, “Real-time quad-rotor path plan-
ning using convex optimization and compound state-
triggered constraints,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Autonomous
Controls Laboratory, Dept. of Aeronautics & Astro-

nautics, University of Washington, Seattle, WA 98195,
USA, October 2019.

[42] Y. Mao, M. Szmuk, and B. Açıkmeşe, “Successive
convexification of non-convex optimal control problems
and its convergence properties,” in 2016 IEEE 55th
Conference on Decision and Control (CDC), Dec 2016,
pp. 3636–3641.

[43] Y. Mao, M. Szmuk, and B. A. Açıkmeşe, “Successive
convexification: A superlinearly convergent algorithm
for non-convex optimal control problems,” ArXiv e-
prints, Apr 2018, arXiv:1804.06539.

9

View publication stats

https://www.researchgate.net/publication/362626122

	Introduction
	Background
	Visual Modeling System
	High-Level and Low-Level Parsers
	Experimental Demonstrations
	Conclusion & Future Work
	References

