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Abstract

This tutorial paper gives basic visualization techniques for vectors and inner products. Two
different techniques for vector visualization are detailed: orthogonal (or spatial) axis represen-
tation and parallel axis representation. Examples and explanation are given in two, three, and
higher dimensions and limitations of each visualization technique are discussed. The geometry
of basic sets of vectors are illustrated and discussed and then two strategies for visualizaing
inner products are given. The first makes use of only the orthogonal representation of vectors
and extends the traditional notion of an inner product as a projection to cases where neither
vector has unit norm. The second makes use of both the parallel and orthogonal representations
and can be easily extended to higher dimensions. !

1 Introduction

Vector visualization as at the heart of developing spatial intuition for linear algebra and many other
modern topics in modern math and engineering. This paper focuses on techniques for visualizing
vectors and inner products.

Two vector visualizations strategies are discussed: orthogonal (or spatial representation and
parallel representation. In the orthogonal representation strategies, vector coordinate values are
drawn relative a coordinate system taken to be orthogonal (in some n-dimensional space). The
vector is then visualized relative to a 2D projection of that higher dimensional coordinate system.
In the parallel representation, vector coordinate values are drawn along parallel axes.

Basic sets of vectors (unit balls, unit cubes, and simplicies) are discussed along with the problem
of depth in the orthogonal representation. Two techniques for visualizing inner products are then
detailed. The first makes use solely of orthogonal vector representation and extends the intuition
behind orthogonal projection to general inner products (where neither vector is a unit vector). The
second technique combines the parallel and spatial representations to give a very general technique
for visualizing inner products. Variations of this second technique are detailed thoroughly along
with their relationship to matrix multiplication and application in higher dimensional contexts.

2 Vector Visualizations

Finite dimensional vectors are represented as a string of digits, each of which gives a displacement
relative to an axis. Visual representations of vectors show these displacements in various ways. We
will focus on two methods which we will refer to as the orthogonal (or spatial) axis representation
and the parallel axis representation.

1(@Dan Calderone, September 2022



2.1 Spatial (Orthogonal) Axes

The natural (spatial) way to represent the various displacements is along axes that are orthogonal
to each other visualized in 2D and 3D here.
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Figure 1: Vectors in the spatial representation in R? and R?. Axes are represented by distinct (2D)
directions (in the image). We conceptualize these vectors as orthogonal in the higher dimensional
space even though the image is a 2D projection.

Cubes (or rectangles) can be used to visualize each individual coordinate of the vector. The
length of each cube edge shows the size of each coordinate. Note also that we can visualize building
up a vector one coordinate at a time as walking along edges of the cube from the origin to the tip.
Note there are multiple different paths that all result in reaching the tip corresponding to the fact
that coordinates can be added in any order.
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Figure 2: Paths along edges of the hypercube (in the orthogonal representation define different ways
the individual coordinates can be added to reach the full vector.

Our brains are highly adapted for visualizing vectors orthogonally in two and three dimensions.
If we wish to use the orthogonal representation for vectors in dimensions higher than three, the best
we can do is to draw a 2D projection of the higher dimensional vectors. One projection method
can be achieved by simply drawing a direction (in 2D) for each axis and then simply showing
displacements along these axes. This process is illustrated here for a vector in R*.
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Figure 3: Orthogonal representation in R*.

Since there is only room for two orthogonal axes in 2D, we must imagine that the axes we draw
are actually orthogonal

Remark 1. The following exercise is useful for visualizing hypercubes in higher dimension. A 1D
cube is a basic line segment along the interval [0,1]. We can obtain a 2D cube, a square, by sweeping
that interval along a 2nd axis. Sweeping the square along a 3rd axis produces a 3D cube.
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Figure 4: (Left) A segment is a 1D hypercube. (Center) Sweeping the segment along the second

axis gives a square (a 2D hypercube). (Left) Sweeping the square along the third axis gives a cube
(a 3D hypercube).

Higher dimensional cubes can be produced by continuing this process. A 3D cube swept along a
4th axis gives a 4D-hypercube; a 4D-hypercube swept along a 5th azis produces a 5D-hypercube; etc.
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Figure 5: (Left) Sweeping the cube along the fourth axis gives a 4D-hypercube. (Right) Sweeping
the 4D-hypercube along the fifth axis gives a 5D-hypercube.

Remark 2. When projecting higher dimensional shapes onto 2D images, a certain amount of in-
formation, the “depth” direction(s), in the image get lost. If we’re drawing a 3D wvector, depth is
one dimensional (out of the page). If we’re drawing a 4D vector, depth is 2-dimensional; for a 5D
vector, depth is 3-dimensional, etc. Any intuition derived from projections of higher dimensional
sets should be verified with rigorous proof.

Referring to these visualization techniques as an “orthogonal” representation is somewhat of a
misnomer because the axes are only truly orthogonal in 2D. We use this term to reference the fact
that we are conceptualizing the axes as orthogonal in some higher dimensional space even though
we can only view 2D projections. The term spatial representation is perhaps more accurate.

2.2 Parallel Axes

Another less traditional way to represent vectors is to place the axes parallel to each other and show
each coordinate displacement in the same direction. We will often use rectangles of the appropriate
heights to visualize this type of representation as demonstrated here for vectors in 2D, 3D, and 4D.
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Figure 6: Parallel representation of vectors in 2D, 3D, and 4D.

Note that for negative coordinates the rectangles extend down from the zero level. Other options
are possible particularly visualizing coordinates as points on parallel axes or on the same axis.



A A A A A
1 QO 10

) T4 Q e
’—‘ H 20 20

3 0 30

x1

Option 1 Option 2 Option 3

Figure 7: Alternative options for parallel representations of vectors (in 4D).

This parallel axis representation does not suffer from the pathology of depth; however this is
simply because it does not seek to leverage our 3D spatial intuition. For example, even in 2D or
3D it is quite difficult to see immediately that two vectors are orthogonal in their parallel axes
representation. (Readers are encouraged to try this.) This parallel axis representation will arise in
several ways in our treatment of these subjects. First, when we represent columns of a matrix using
a spatial representation, the rows naturally appear in a parallel representation along each axis (and
vice versa if the rows are represented spatially, the columns appear in a parallel representation.)
While not used significantly in this paper, this is an interesting fact that the authors hope to
explore in future work. Second, a hybrid parallel-spatial geometric technique can be quite useful in
visualizing inner products (discussed below).

3 Basic Geometric Sets

We briefly discuss several geometric sets that we will refer to later. For each set, we label several
examples of interesting points. We have already discussed unit cubes briefly. Similarly, let [,
represent the n-dimensional unit cube.
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Figure 8: Hypercubes in 2D, 3D, and 4D (orthogonal representations).



Let Oy, represent the n-dimensional unit sphere.
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Figure 9: Hyperspheres in 2D, 3D, and 4D (orthogonal representations).

Note that depending on the axes are drawn a unit circle may not appear perfectly circular. Let
A, represent the n-dimensional simplex.
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Figure 10: Simplicies in 2D, 3D, and 4D (orthogonal representations).

Simplexes are often used to represent probability distributions on finite sets, ie. a vector z € R”
can represent a discrete probability distribution if and only if it satisfies the above conditions. We
note that if we remove the constraints that each element x; > 0, we get a a particular n — 1-
dimensional affine space

ty={zer" 1Tz =1}



For n = 2 this is a line through the points I, Is; for n = 3 this is a plane through the points
11, 15, I3. Later on, this set will be useful in defining many affine spaces via transformation through
a matrix.
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Figure 11: Affine sets ¢> and /3

It will also be useful to represent unit balls of other norms. The 2-norm unit ball is simply the
Euclidean unit sphere above. Let {,, represent the n-dimensional unit 1-norm ball.

On = {x eR" | ||z]s = 1}

Note that the “faces” of the 1-norm ball are simplicies with different sign patterns.

Figure 12: 1-norm balls in 2D, 3D, and 4D (orthogonal representation)

Finally, let [J5° represent the n-dimensional unit co-norm ball.
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Figure 13: Inf-norm balls in 2D, 3D, and 4D (orthogonal representation)

Note that the unit oco-ball is substantially larger than the unit cube though it has the same
shape. The unit cube always has unit volume regardless of the dimension. The volume of the unit
oo-ball grows rapidly as 2".

Again discussion of these sets is left till later.

4 Inner Products

Visualizing inner products, y’z for x,y € R" is critical to any geometric visualization. We detail
two methods here: one based on the spatial axis representations of vectors and one based on a
hybrid parallel-spatial axis representation. Note that while we will present these techniques with
the two vectors y and x playing different roles, inner products are symmetric and the roles of these
vectors can always be reversed.

4.1 Spatial Visualization

The first technique is a somewhat traditional approach to inner product visualization where an inner
product is thought of as a projection from one vector onto another. Consider two vectors z,y € R™.
First define the unit vector in the z direction (labeled u) and an (n — 1)-dimensional hyperplane,
7T tangent to the unit sphere at this point (shown here in 2D and 3D). Next, define a vector/point
v that points in the y-direction on this plane, given by the intersection of this hyperplane with the
line through y. If we drag this point v to the tip of z (and move the tip of y in a parallel motion),
then y moves to a vector with length y”z. This process is illustrated (for y, 2 € R?) here.



Figure 14: Spatial visualizations of inner products in 2D (left) and 3D (right) for general = and y

A brief algebraic justification for this is warranted.

Proof. From properties of similar triangles and the definition of v we can obtain that

A
= 7“3/”27 |v|l2cosd =1
lzllz llvll2
It follows that A = ||y|[2]|x|[2cosd = yTx If x is a unit vector, ie. ||x||2 = 1, this visualization

becomes the traditional visualization (shown below) of an inner product as a projection. One can
think of this technique as extending the projection idea to the case when x and y are both non-unit

vectors.

Figure 15: Spatial visualizations of inner products in 2D (left) and 3D (right) when z is a unit

vector.

The reader is encouraged to experiment with other values of x and y. Here we show the case
where the inner product is negative and the important limiting case where y and z are orthogonal
(y"z = 0) and the point v goes to oo, ie. y does not intersect the tangent plane.
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Figure 16: Case where y' 2 < 0 (left) and y 2 = 0 (right).

We also note that this technique reduces to perhaps the most natural way to visualize scalar
multiplication. For two values x,y € R on a number line, one can think of taking the product yx as
stretching a unit value for y to be the number x, ie. treating x as the “units” for y. This “rescaling”
of the y number line (by x) moves y to yz.
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Figure 17: Spatial representation of inner products for scalar y, .

4.2 Parallel-Spatial

The second inner product visualization technique combines the parallel axis and spatial axis repre-
sentations of vectors. This technique is subtle and actually quite powerful and is closely related to
the idea of column geometry visualization which is at the heart of this paper.

For this technique, we will represent one vector, y, in it’s parallel representation, and the other
vector, x, in it’s spatial representation. We illustrate this for y,2 € R3. First, draw y as a set
of heights (or parallel displacements). Next, draw the axes for x with the tips of the standard
basis vectors at the ends of each coordinate values of y and place the origin anywhere along the
zero-value line. Finally, draw the spatial representation of x relative to these axis. The height of
the corresponding point (or, more generally, the displacement along the parallel axis direction) is
yTz. This technique is illustrated in the figure below.
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Figure 18: Hybrid parallel-spatial inner-product visualization. z is drawn in it’s orthogonal repre-

sentation relative to axes whose basis vectors run from an (arbitrary) original point on the baseline

to the elements of y drawn in parallel representation. The height of x represented in this way is
T

Yy .

Algebraically, the justification for this technique is immediate.

Proof. For y,z € R", let Y € R?>*” be a matrix whose columns are the 2D vectors that represent
the directions of the z-axes drawn on the parallel representation of y, ie. let

e N
-y — Yyr Y2 - Yn

where h € R"™ is vector of arbitrary horizontal lengths for the axes. For a vector x € R", Yz gives
the location of z in the hybrid diagram. Note that

Yz = = g
[nyr >, Vi

and the second coordinate (the height) gives the inner product y'z. Note the direction of the
“second axis” in this example is arbitrary and could point vertically, horizontally or in any other
direction. What is more important is that the values y; are all measured from the same zero line. [

A more geometric intuition for why this works comes from considering the geometry of paral-
lelograms and similar triangles. We illustrate this here for two dimensions and then extend the
argument to three dimensions; one can see how an inductive argument would easily extend it to
n-dimensions.

11
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Figure 19: Geometry of the hybrid visualization method starting in 2D (left) and then extending
to 3D (right). Note the similar triangles and repeated application of parallelogram geometry.

Key to this idea is that the location of the origin and actually all the horizontal values in this
picture are irrelevant to the final result and can be shifted freely. We will often take advantage of
this to improve the legibility of various illustrations. Again, the reader is encouraged to try this.
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Figure 20: Location of the origin is arbitrary, ie. it does not affect the height and thus the value of
T
y' T

This technique is particularly useful when the vector z is a convex combination, ie. 17z =
1, > 0. In this case, the image of = in the hybrid visualization will appear in the convex hull of

of the heights of the y/s as illustrated here. This image and then the value y’z are easy to see.
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Figure 21: The method is particularly suited to visualizing y ' 2 when x is contained in the simplex,
ie. x takes a convex combination of the values of y.

On the other hand, the visualization can be more difficult to use when the values of x are large
or negative. It still works, however.
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Figure 22: Hybrid representation when some values of = and/or y are negative.
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Other shapes besides convex hulls such as spheres, cubes, etc. are possible as well though
(perhaps) more cumbersome.
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Figure 23: Values of "z for = on the unit sphere.

Visualizing the unit sphere in this way can be especially useful for seeing the set of vectors
that are orthogonal to y when y is represented in the parallel representation. The set of vectors
orthogonal to x is the preimage of the line at zero height in the domain, the x space shown here.
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Figure 24: The pre-image of the zero line "z = 0 gives the set of vectors z orthogonal to the to .

It is worth noting that the worst option for the horizontal position of the elements of y is to
line them all up on the same axis. Providing variation in the horizontal configuration allows us
to differentiate the vector elements and “see" the spatial representation of x better. In fact, many
times even if the points naturally lie on the same axis, we will simply “bump" each of them off the
axis an arbitrary (but different) amount. When we project the result back onto the original axis to
visualize y”  we are removing the horizontal information that we added initially.
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Figure 25: The horizontal components of the axes are arbitrary and can be adjusted to make the
geometry of x more visible.

Also it should be noted that there is nothings special about “horizontal" and “vertical" in these
examples and there roles can be swapped with the same intuition. However, it is important that
the “perturbation" direction is orthogonal to the primary direction.

This parallel-spatial inner-product visualization technique works for higher dimensional vectors
as well and in this way is more versatile then the classical spatial visualization technique. We
demonstrate it here for z,y € R® to for a given y shown in parallel representation and z’s in the
simplex and unit cube
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Figure 26: Examples of hybrid representation for x,y € R® for z in the simplex (left) and z in the
unit cube (right)

and also the unit sphere.
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Figure 27: Example of hybrid representation for z,y € R® for = in the unit sphere.

As the dimension increases, one’s ability to accurately visualize shapes decreases. However, the
spatial intuition can still be useful to get a sense of what the inner product will be.
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