Calculus

Major sources:

Winter 2022 - Dan Calderone

Product Rule

Product rule for derivatives:

$$\frac{d}{dt}(uv) = \frac{du}{dt}v + u\frac{dv}{dt}$$

Product rule to integration by parts

Integrating the product rule...

...to get integration by parts

$$\int_{t_1}^{t_2} \frac{d}{dt} \left(uv \right) dt = \int_{t_1}^{t_2} \frac{du}{dt} v + u \frac{dv}{dt} dt$$

$$\Rightarrow \left[uv \right]_{t_1}^{t_2} = \int_{u(t_1)}^{u(t_2)} v \, du + \int_{v(t_1)}^{v(t_2)} u \, dv$$

Leibniz Integral Rule

Area =
$$\int_{a(t)}^{b(t)} f(t, \tau) d\tau$$

$$\frac{d\text{Area}}{dt} = \frac{f(t,b)\frac{db}{dt}}{f(t,a)\frac{da}{dt}} + \int_{a(t)}^{b(t)} \frac{df(t,\tau)}{dt} d\tau$$

Vector Derivatives

Function: $f: \mathcal{X} \to \mathcal{Y}$ y = f(x)

Derivative: linear map that estimates Δf given Δx

$$\Delta f = \left[\frac{\partial f}{\partial x}\right] \Delta x$$

$$\Delta f = \left[\frac{\partial f}{\partial x}\right] \Delta x \qquad \qquad \Delta f = \left[\frac{\partial f}{\partial x}\right] \Delta x$$

Scalar Derivatives:

$$f:\mathbb{R} o\mathbb{R}$$

$$\Delta y = \Delta f = \frac{\partial f}{\partial x} \Delta x$$

Vector Derivatives: scalar functions

$$f: \mathbb{R}^n \to \mathbb{R}$$

Vector perturbation

$$\Delta f = \begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix} \Delta x = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix}$$
 row vector

$$=rac{\partial f}{\partial x_1}\Delta x_1+\cdots+rac{\partial f}{\partial x_n}\Delta x_n$$
 ...partia derivativ

Vector Derivatives:

vector functions

$$\Delta f = \begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix} \Delta x = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial}{\partial f} \\ \frac{\partial f}{\partial x_1} \end{bmatrix} \Delta x_1 + \dots + \begin{bmatrix} \frac{\partial}{\partial f} \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \Delta x_n = \begin{bmatrix} \frac{\partial f_1}{\partial x} \Delta x \\ \vdots \\ \frac{\partial f_1}{\partial x} \Delta x \end{bmatrix}$$