Plotting & Drawing - 2D/3D

Python & Matlab

Meshgrid - Surface

Meshgrid

...plot f(x,y)

$$x = [0,1,2,3,4,5,6,7,8,9]$$

y = [0,1,2,3,4,5,6,7,8,9]

$$z = f(x, y)$$

X,Y = meshgrid(x,y)

def height(x,y):
 return // height of surface

Z = height(X,Y)

apply function to each array

element wise

values in Z give surface heights.

surf(X,Y,Z) plot surface heights

 $j \longrightarrow$

X = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

varies along 2nd index

Meshgrid - Surface

Meshgrid ...plot f(x,y)

x = [0,1,2,3,4,5,6,7,8,9]

y = [0,1,2,3,4,5,6,7,8,9]

$$z = f(x, y)$$

X,Y = meshgrid(x,y)

def height(x,y):
 return // height of surface

Z = height(X,Y)

apply function to each array

element wise

values in Z give surface heights.

surf(X,Y,Z) plot surface heights

 $j \longrightarrow$

varies along 2nd index

Meshgrid - Surface

Meshgrid

 \dots plot f(x,y)

x = [0,1,2,3,4,5,6,7,8,9]

y = [0,1,2,3,4,5,6,7,8,9]

X,Y = meshgrid(x,y)

def height(x,y):
 return // height of surface

Z = height(X,Y)

apply function to each array

element wise

values in Z give surface heights.

surf(X,Y,Z) plot surface heights

X = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

varies along 2nd index

Meshgrid - Contours

Meshgrid

...plot f(x,y)

x = [0,1,2,3,4,5,6,7,8,9]

y = [0,1,2,3,4,5,6,7,8,9]

X,Y = meshgrid(x,y)

def height(x,y):
 return // height of surface

Z = height(X,Y)

apply function to each array

element wise

values in Z give surface heights.

contour(X,Y,Z)

plot contours of surface

X = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

varies along 2nd index

Meshgrid - Vector field

Meshgrid

```
...plot f(x,y)
```

```
x = [0,1,2,3,4,5,6,7,8,9]
```

$$y = [0,1,2,3,4,5,6,7,8,9]$$

quiver(X,Y,U,V)

vectors located at points

X,Y = meshgrid(x,y)

def computeArrow(x,y):

return // returns arrow vector

U = np.zeros(np.shape(X))

V = np.zeros(np.shape(X))

for i in range(nx):

for j in range(ny):

arrow = computeArrow(X[i,j],Y[i,j]);

U[i,j] = arrow[0]

V[i,j] = arrow[1]

varies along 2nd index

Meshgrid 3D

Meshgrid ...plot f(x,y,z)

$$x = [0,1,2,3,4,5,6,7,8,9]$$

X = [[[0, 0, 0, 0],

y = [0,1,2,3,4,5,6,7,8,9]

z = [0,1,2,3,4,5,6,7,8,9]

X,Y,Z = meshgrid(x,y,z)

def density(x,y,z):
 return // density at a point

W = density(X,Y,Z) apply function to each array element wise

values in W give density at x,y,z point

Y = [[[0, 0, 0, 0],

k

Z = [[[0, 1, 2, 3],

$$x = [0.5, 0.75]$$

x @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 \end{bmatrix}}_{X} \underbrace{\begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix}$$

$$x = [0.5, 0.75]$$

x @ AXES

x = [0.5, 0.75] CRDS = [[1.0, 0.2], [0.2, 1.0]

x @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix}$$

$$x = [0.5, 0.75]$$

x @ AXES

2

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \end{bmatrix}}_{A} = \begin{bmatrix} x_{11} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{12} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\ x_{21} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{22} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

$$x = [[0.5, 0.7], CRDS = [[1.0, 0.2], [2.0, 0.3]]$$

x @ CRDS @ AXES

$$x = [0.5, 0.75]$$

$$AXES = [[1, 0], [0, 1]]$$

x @ AXES

2

Matrix Multiplication

$$\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{32} \\
x_{31} & x_{32}
\end{bmatrix} \underbrace{\begin{bmatrix}
- & a_1^T & - \\
- & a_2^T & -
\end{bmatrix}}_{A} = \begin{bmatrix}
x_{11} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{12} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{21} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{22} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{31} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{32} \begin{bmatrix} - & a_2^T & - \end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

$$x = [[0.5, 0.7], CRDS = [[1.0, 0.2], [2.0, 0.3], [0.2, 1.0]]$$

x @ CRDS @ AXES

$$x = [0.5, 0.75]$$

x @ AXES

Matrix Multiplication

$$\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{32} \\
x_{31} & x_{32}
\end{bmatrix} \underbrace{\begin{bmatrix}
- & a_1^T & - \\
- & a_2^T & -
\end{bmatrix}}_{A} = \begin{bmatrix}
x_{11} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{12} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{21} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{22} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{31} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{32} \begin{bmatrix} - & a_2^T & - \end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Unit cube

$$x = [0.5, 0.75]$$
 AXES = [[1, 0], [0, 1]]

x @ AXES

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Inf-norm ball

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$x = [0.5, 0.75]$$
 AXES = $[[1, 0], [0, 1]]$

x @ AXES

Matrix Multiplication

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{32} \\ x_{31} & x_{32} \end{bmatrix} \underbrace{\begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \end{bmatrix}}_{A} = \begin{bmatrix} x_{11}[- & a_1^T & -] + x_{12}[- & a_2^T & -] \\ x_{21}[- & a_1^T & -] + x_{22}[- & a_2^T & -] \\ x_{31}[- & a_1^T & -] + x_{32}[- & a_2^T & -] \end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Diamond

SHAPE @ CRDS @ AXES

$$x = [0.5, 0.75]$$
 AXES = [[1, 0], [0, 1]]

x @ AXES

Matrix Multiplication

$$\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{32} \\
x_{31} & x_{32}
\end{bmatrix} \underbrace{\begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \end{bmatrix}}_{A} = \begin{bmatrix}
x_{11} [- & a_1^T & -] + x_{12} [- & a_2^T & -] \\
x_{21} [- & a_1^T & -] + x_{22} [- & a_2^T & -] \\
x_{31} [- & a_1^T & -] + x_{32} [- & a_2^T & -]
\end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Unit circle

SHAPE = [[
$$cos(0.0), sin(0.0)$$
], CRDS = [[1.0, 0.2], [$cos(0.1), sin(0.1)$], [$cos(0.2), sin(0.2)$],

 $\theta = [\cos(0.3), \sin(0.3)],$

cos(6.2), sin(6.2)]]

$$x = [0.5, 0.75]$$
 AXES = $[[1, 0], [0, 1]]$

x @ AXES

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Ellipse: Axis-Length Representation

CRDS @ AXES
$$= \left[\begin{array}{cc} U \end{array} \right] \left[\begin{matrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{matrix} \right] \left[\begin{array}{cc} V^T \end{array} \right]$$

$$= \begin{bmatrix} \begin{vmatrix} & & | \\ U_1 & U_2 \\ | & & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \end{bmatrix}$$

Unit circle

SHAPE = [[
$$cos(0.0), sin(0.0)$$
], CRDS = [[1.0, 0.2], [$cos(0.1), sin(0.1)$], [$cos(0.2), sin(0.2)$],

 θ

[cos(6.2), sin(6.2)]]

cos(0.3), sin(0.3)],

Singular

Value

Decomposition

SHAPE @ CRDS @ AXES

$$x = [0.5, 0.75]$$
 AXES = $[[1, 0], [0, 1]]$

x @ AXES

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Ellipse: Axis-Length Representation

$$=\begin{bmatrix} | & | \\ U_1 & U_2 \\ | & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \end{bmatrix} \longleftarrow \text{ Axis 1}$$

Length 1 Length 2

Singular

Value

Decomposition

Unit circle

SHAPE = [[
$$cos(0.0), sin(0.0)$$
], CRDS = [[1.0, 0.2], [$cos(0.1), sin(0.1)$], [$cos(0.2), sin(0.2)$],

cos(6.2), sin(6.2)]]

cos(0.3), sin(0.3)],

SHAPE @ CRDS @ AXES

$$x = [0.5, 0.75]$$
 AXES = $[[1, 0], [0, 1]]$

x @ AXES

Matrix Multiplication

$$\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{32} \\
x_{31} & x_{32}
\end{bmatrix} \underbrace{\begin{bmatrix}
- & a_1^T & - \\
- & a_2^T & -
\end{bmatrix}}_{A} = \begin{bmatrix}
x_{11} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{12} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{21} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{22} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{31} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{32} \begin{bmatrix} - & a_2^T & - \end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Circle arc

SHAPE = [[
$$cos(0.0), sin(0.0)$$
], CRDS = [[1.0, 0.2], [$cos(0.1), sin(0.1)$], [$cos(0.2), sin(0.2)$],

 $\theta = [\cos(0.3), \sin(0.3)],$

[cos(5.5), sin(5.5)]]

$$x = [0.5, 0.75]$$
 AXES = [[1, 0], [0, 1]]

x @ AXES

2

Matrix Multiplication

$$\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{32} \\
x_{31} & x_{32}
\end{bmatrix} \underbrace{\begin{bmatrix}
- & a_1^T & - \\
- & a_2^T & -
\end{bmatrix}}_{A} = \begin{bmatrix}
x_{11} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{12} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{21} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{22} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{31} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{32} \begin{bmatrix} - & a_2^T & - \end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Circle arc

SHAPE = [[
$$cos(0.0), sin(0.0)$$
], CRDS = [[1.0, 0.2], [$cos(0.1), sin(0.1)$], [$cos(0.2), sin(0.2)$],

 $\Theta = [\cos(0.3), \sin(0.3)],$

cos(3.9), sin(3.9)]]

$$x = [0.5, 0.75]$$
 AXES = $[[1, 0], [0, 1]]$

x @ AXES

Matrix Multiplication

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Circle arc

SHAPE = [[
$$cos(0.0), sin(0.0)$$
], CRDS = [[1.0, 0.2], [$cos(0.1), sin(0.1)$], [$cos(0.2), sin(0.2)$],

 $\theta = [\cos(0.3), \sin(0.3)],$

cos(2.4), sin(2.4)]]

$$x = [0.5, 0.75]$$
 AXES = $[[1, 0], [0, 1]]$

x @ AXES

Matrix Multiplication

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{32} \\ x_{31} & x_{32} \end{bmatrix} \underbrace{\begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \end{bmatrix}}_{A} = \begin{bmatrix} x_{11}[- & a_1^T & -] + x_{12}[- & a_2^T & -] \\ x_{21}[- & a_1^T & -] + x_{22}[- & a_2^T & -] \\ x_{31}[- & a_1^T & -] + x_{32}[- & a_2^T & -] \end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

Circle arc

SHAPE = [[
$$cos(0.0), sin(0.0)$$
], CRDS = [[1.0, 0.2], [$cos(0.1), sin(0.1)$], [$cos(0.2), sin(0.2)$],

 $\theta = [\cos(0.3), \sin(0.3)],$

cos(1.6), sin(1.6)]]

$$x = [0.5, 0.75]$$
 AXES = $[[1, 0], [0, 1]]$

x @ AXES

Matrix Multiplication

$$\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{32} \\
x_{31} & x_{32}
\end{bmatrix} \underbrace{\begin{bmatrix}
- & a_1^T & - \\
- & a_2^T & -
\end{bmatrix}}_{A} = \begin{bmatrix}
x_{11} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{12} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{21} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{22} \begin{bmatrix} - & a_2^T & - \end{bmatrix} \\
x_{31} \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_{32} \begin{bmatrix} - & a_2^T & - \end{bmatrix}$$

x @ CRDS @ AXES

cos(1.6), sin(1.6)]]

Circle arc

SHAPE = [[
$$\cos(0.0)$$
, $\sin(0.0)$], CRDS = [[1.0, 0.2], [$\cos(0.1)$, $\sin(0.1)$], [$\cos(0.2)$, $\sin(0.2)$], θ [$\cos(0.3)$, $\sin(0.3)$],

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES plot(PTS[:,0], PTS[:,1])

$$x = [0.5, 0.75]$$
 AXES = $[[1, 0], [0, 1]]$

x @ AXES

Matrix Multiplication

$$\begin{bmatrix}
x_{11} & x_{12} \\
x_{21} & x_{32} \\
x_{31} & x_{32}
\end{bmatrix} \begin{bmatrix}
- & a_1^T & - \\
- & a_2^T & -
\end{bmatrix} = \begin{bmatrix}
x_{11} [- & a_1^T & -] + x_{12} [- & a_2^T & -] \\
x_{21} [- & a_1^T & -] + x_{22} [- & a_2^T & -] \\
x_{31} [- & a_1^T & -] + x_{32} [- & a_2^T & -]
\end{bmatrix}$$

$$x = [0.5, 0.75]$$
 CRDS = [[1.0, 0.2], [0.2, 1.0]]

x @ CRDS @ AXES

cos(1.6), sin(1.6)]]

Circle arc

SHAPE = [[
$$\cos(0.0)$$
, $\sin(0.0)$], CRDS = [[1.0 , 0.2], [$\cos(0.1)$, $\sin(0.1)$], [$\cos(0.2)$, $\sin(0.2)$], θ [$\cos(0.3)$, $\sin(0.3)$],

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES plot(PTS[:,0], PTS[:,1])

$$x = [0.5, 0.75]$$
 AXES = [[1, 0], [0, 1]]

x @ AXES

$$x = [0.5, 0.75]$$
 CRDS = $[[1.0, 0.2], [0.2, 1.0]]$

x @ CRDS @ AXES

cos(1.6), sin(1.6)]]

Matrix Multiplication

Circle arc

SHAPE = [[
$$cos(0.0), sin(0.0)$$
], CRDS = [[$-1.0, 0.2$], [$cos(0.1), sin(0.1)$], [$cos(0.2), sin(0.2)$], θ [$cos(0.3), sin(0.3)$],

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES plot(PTS[:,0], PTS[:,1])

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

x @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = $[[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]$

x @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = \underbrace{x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix}}_{+x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix}}_{+x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}}_{A}$$

Drawing

SHAPE @ CRDS @ AXES

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = [[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]

x @ CRDS @ AXES

Cube

[0, 1, 1]]

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = [[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]

x @ CRDS @ AXES

Cube

[0, 1, 1]

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

plot(PTS[:,0] , PTS[:,1])

SHAPE @ CRDS @ AXES

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = $[[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]$

x @ CRDS @ AXES

Cube

[0, 1, 1]

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = convexhull(SHAPE @ CRDS @ AXES)

PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2

plot(PTS[:,0], PTS[:,1])

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]$

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = $[[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]$

x @ CRDS @ AXES

Simplex

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = \underbrace{x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix}}_{+x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix}}_{+x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}}_{A}$$

Drawing

Code

PTS = convexhull(SHAPE @ CRDS @ AXES)

PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2

plot(PTS[:,0] , PTS[:,1])

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = [[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]

x @ CRDS @ AXES

Unit circle

SHAPE = [[
$$cos(0.0), sin(0.0)$$
],

[$cos(0.1), sin(0.1)$],

[$cos(0.2), sin(0.2)$],

[$cos(0.3), sin(0.3)$],

cos(6.2), sin(6.2)]]

SHAPE @ PLANE @ CRDS @ AXES

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ PLANE @ CRDS @ AXES PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2 plot(PTS[:,0] , PTS[:,1])

Axes & Coordinates - 3D SH

for Axis-Length Representation:

take SVD of PLANE @ CRDS @ AXES

(see above for details)

x = [0.8, 1.0, 0.5] AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

$$x = [0.8, 1.0, 0.5]$$
 CRDS = $[[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]$

x @ CRDS @ AXES

Unit circle

SHAPE = [[
$$cos(0.0), sin(0.0)],$$

[$cos(0.1), sin(0.1)],$
[$cos(0.2), sin(0.2)],$
[$cos(0.3), sin(0.3)],$

cos(6.2), sin(6.2)]]

SHAPE @ PLANE @ CRDS @ AXES

2 x 2 matrix

Drawing

Code

PTS = SHAPE @ PLANE @ CRDS @ AXES

PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2

plot(PTS[:,0], PTS[:,1])

Axes & Coordinates - 3D SH

for Axis-Length Representation:

PLANE @ CRDS @ AXES take SVD of

(see above for details)

2 x 2 matrix

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = [[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]

x @ CRDS @ AXES

Unit circle

SHAPE = [[
$$cos(0.0), sin(0.0)$$
],

[$cos(0.1), sin(0.1)$],

[$cos(0.2), sin(0.2)$],

[$cos(0.3), sin(0.3)$],

cos(6.2), sin(6.2)]]

SHAPE @ PLANE @ CRDS @ AXES

Drawing

Code

PTS = SHAPE @ PLANE @ CRDS @ AXES PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2 plot(PTS[:,0] , PTS[:,1])

Axes & Coordinates - 3D SH

for Axis-Length Representation:

take SVD of PLANE @ CRDS @ AXES

(see above for details)

 $+x_3\begin{bmatrix} -a_3^T - \end{bmatrix}$

$$x = [0.8, 1.0, 0.5]$$

AXES =
$$[[1.0, 0.0], [0.0, 1.0], [-.7, -.7]$$

x @ AXES

$$x = [0.8, 1.0, 0.5]$$

x @ CRDS @ AXES

Unit circle

SHAPE = [[
$$cos(0.0), sin(0.0)$$
],

[$cos(0.1), sin(0.1)$],

[$cos(0.2), sin(0.2)$],

[$cos(0.3), sin(0.3)$],

cos(6.2), sin(6.2)]]

SHAPE @ PLANE @ CRDS @ AXES

2 x 2 matrix

Code

PTS = SHAPE @ PLANE @ CRDS @ AXES

PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2

plot(PTS[:,0], PTS[:,1])

3 x 2 matrix

3 x 3 rotation

2 x 2 rotation

CRDS @ AXES
$$= \left[egin{array}{c|c} U \ \hline 0 \ \hline 0 \ \hline 0 \ \hline 0 \ \hline \end{array} \right] \left[egin{array}{c|c} V^T \ \hline V^T \ \hline \end{array} \right]$$

Singular **Value Decomposition**

$$= \begin{bmatrix} | & | & | \\ U_1 & U_2 & U_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \end{bmatrix}$$

Unit circle

SHAPE = [[
$$cos(0.0), sin(0.0)$$
],
[$cos(0.1), sin(0.1)$],
[$cos(0.2), sin(0.2)$],
[$cos(0.3), sin(0.3)$],

$$[0, 0, 1],$$

$$CRDS = [[1.0, 0.0, 0.]]$$

cos(6.2), sin(6.2)]]

CRDS = [[1.0, 0.0, 0.3],[0.3, 1.0, 0.0],0.0, 0.3, 1.0]

SHAPE @ PLANE @ CRDS @ AXES

Matrix Multiplication

Drawing

Code

PTS = SHAPE @ PLANE @ CRDS @ AXES PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2 plot(PTS[:,0] , PTS[:,1])

Unit circle

SHAPE @ PLANE @ CRDS @ AXES

Matrix Multiplication

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ PLANE @ CRDS @ AXES

PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2

plot(PTS[:,0], PTS[:,1])

Unit circle

SHAPE @ PLANE @ CRDS @ AXES

Drawing

Code

PTS = SHAPE @ PLANE @ CRDS @ AXES

PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2

plot(PTS[:,0], PTS[:,1])

2 x 2 3 x 3 rotation 3 x 2 matrix rotation Singular

CRDS @ AXES
$$= \left[egin{array}{c|c} U \end{array}
ight] \left[egin{array}{c|c} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{array}
ight] \left[egin{array}{c|c} V^T \end{array}
ight]$$

3D Depth Direction

Unit circle

cos(6.2), sin(6.2)]]

$$PLANE = [[0, 1, 0], [0, 0, 1],$$

SHAPE @ PLANE @ CRDS @ AXES

Value

Decomposition

Drawing

Code

PTS = SHAPE @ PLANE @ CRDS @ AXES PTS = PTS + SHIFT @ AXES OR + SHIFT @ AXES2 plot(PTS[:,0] , PTS[:,1])

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]$

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = [[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]

x @ CRDS @ AXES

Plane - 2D

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{X} = \underbrace{x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix}}_{+ x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix}}_{+ x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}}_{- A}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]$

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = [[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]

x @ CRDS @ AXES

Plane - 2D

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[1.0, 0.0], [0.0, 1.0], [-.7, -.7]]

x @ AXES

$$x = [0.8, 1.0, 0.5]$$
 CRDS = [[1.0, 0.0, 0.3], [0.3, 1.0, 0.0], [0.0, 0.3, 1.0]]

x @ CRDS @ AXES

Plane - 1D

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{x} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

b perpendicular to plane

Plane - 2D, normal vector

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

b perpendicular to plane

$$b^{T} = \begin{bmatrix} U_{1} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & 0 \end{bmatrix} \begin{bmatrix} - & V_{1}^{T} & - \\ - & V_{2}^{T} & - \\ - & V_{3}^{T} & - \end{bmatrix}$$

Plane - 2D, normal vector

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

b perpendicular to plane

SVD

$$b^T = \begin{bmatrix} U_1 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \\ - & V_3^T & - \end{bmatrix}$$
 3D orthogonal direction

Plane - 2D, normal vector

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = \underbrace{x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix}}_{X} \begin{bmatrix} - & a_2^T & - \end{bmatrix}}_{+ x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix}}_{+ x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}}_{A}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

b perpendicular to plane

SVD

$$b^T = \begin{bmatrix} U_1 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \\ - & V_3^T & - \end{bmatrix}$$
 3D in plane directions

Plane - 2D, normal vector

$$\begin{aligned} \mathsf{SHAPE} = & [[-1,-1], \quad \mathsf{CRDS} = \begin{bmatrix} - & V_2^T & - \\ - & V_3^T & - \end{bmatrix} \\ & [1,1], \\ & [-1,1] \end{aligned}$$

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

 b_1, b_2 perpendicular to line

Plane - 1D, normal plane

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

b_1, b_2 perpendicular to line

$$\begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \end{bmatrix} = \begin{bmatrix} | & | \\ U_1 & U_2 \\ | & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \\ - & V_3^T & - \end{bmatrix}$$

Plane - 1D, normal plane

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

b_1, b_2 perpendicular to line

$$\begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & \\ U_1 & U_2 \\ & & \end{vmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \\ - & V_3^T & - \end{bmatrix}$$

Plane - 1D, normal plane

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

b_1, b_2 perpendicular to line

$$\begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \end{bmatrix} = \begin{bmatrix} | & | \\ U_1 & U_2 \\ | & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \\ - & V_3^T & - \end{bmatrix}$$

Plane - 1D, normal plane

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\underbrace{\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}}_{X} \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{bmatrix}}_{A} = x_1 \begin{bmatrix} - & a_1^T & - \end{bmatrix} + x_2 \begin{bmatrix} - & a_2^T & - \end{bmatrix} + x_3 \begin{bmatrix} - & a_3^T & - \end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

b_1, b_2 perpendicular to line

$$\begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \end{bmatrix} = \begin{bmatrix} | & | \\ U_1 & U_2 \\ | & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix} \begin{bmatrix} - & V_1^T & - \\ - & V_2^T & - \\ - & V_3^T & - \end{bmatrix}$$

$$CRDS = \begin{bmatrix} - & V_3^T & - \end{bmatrix}$$

Plane - 1D, normal plane

$$\mathsf{SHAPE} = \begin{bmatrix} \begin{bmatrix} -1 \end{bmatrix}, & \mathsf{CRDS} = \begin{bmatrix} - & V_3^T & - \end{bmatrix} & b_1 \\ & 1 \end{bmatrix}, \\ b_2 & 3 \end{bmatrix}$$

SHAPE @ CRDS @ AXES

Matrix Multiplication

$$\begin{bmatrix}
x_1 & x_2 & x_3
\end{bmatrix} \begin{bmatrix}
- & a_1^T & - \\
- & a_2^T & - \\
- & a_3^T & -
\end{bmatrix} = x_1 \begin{bmatrix}
- & a_1^T & -
\end{bmatrix}
+ x_2 \begin{bmatrix}
- & a_2^T & -
\end{bmatrix}
+ x_3 \begin{bmatrix}
- & a_3^T & -
\end{bmatrix}$$

Drawing

Code

PTS = SHAPE @ CRDS @ AXES + SHIFT @ AXES

OR + SHIFT @ AXES2

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[-0.7,-0.7], [1.0, 0.0], [0.0, 1.0]] x @ AXES

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

Drawing - 2D Projection

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

Cartesian coordinates

$$p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$$

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

Polar coordinates

$$egin{bmatrix} r & 0 & 0 \end{bmatrix} egin{bmatrix} \cos\psi & 0 & -\sin\psi \ 0 & 1 & 0 \ \sin\psi & 0 & \cos\psi \end{bmatrix}$$

Drawing - 2D Projection

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[-0.7,-0.7], [1.0, 0.0], [0.0, 1.0]]

x @ AXES

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

$$egin{bmatrix} r & 0 & 0 \end{bmatrix} egin{bmatrix} \cos\psi & 0 & -\sin\psi \ 0 & 1 & 0 \ \sin\psi & 0 & \cos\psi \end{bmatrix} egin{bmatrix} \cos\phi & \sin\phi & 0 \ -\sin\phi & \cos\phi & 0 \ 0 & 1 \end{bmatrix}$$

x = [0.8, 1.0, 0.5] AXES = [[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

$$\begin{bmatrix} r & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos \psi & 0 & -\sin \psi \\ 0 & 1 & 0 \\ \sin \psi & 0 & \cos \psi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} = r \begin{bmatrix} \cos \psi \cos \phi & \cos \psi \sin \phi & -\sin \psi \end{bmatrix}$$

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

$$p = \begin{bmatrix} r\cos\psi\cos\phi & r\cos\psi\sin\phi & -r\sin\psi \end{bmatrix}$$

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Viewing position

$$p = \begin{bmatrix} r \cos \psi \cos \phi & r \cos \psi \sin \phi & -r \sin \psi \end{bmatrix}$$
$$= \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$$

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

Vertical Direction

$$p = \begin{bmatrix} r \cos \psi \cos \phi & r \cos \psi \sin \phi & -r \sin \psi \end{bmatrix}$$
$$= \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$$

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$

Constructing **Camera Coordinates**

$$p = \begin{bmatrix} r \cos \psi \cos \phi & r \cos \psi \sin \phi & -r \sin \psi \end{bmatrix}$$
$$= \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$$

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$

 $C_2 = \text{normalize}(v \times C_1)$

$$p = \begin{bmatrix} r \cos \psi \cos \phi & r \cos \psi \sin \phi & -r \sin \psi \end{bmatrix}$$
$$= \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$$

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[-0.7,-0.7], [1.0, 0.0], [0.0, 1.0]] x @ AXES

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$

 $C_2 = \text{normalize}(v \times C_1)$

 $C_3 = \text{normalize}(C_1 \times C_2)$

Camera Coordinates

$$p = \begin{bmatrix} r \cos \psi \cos \phi & r \cos \psi \sin \phi & -r \sin \psi \end{bmatrix}$$
$$= \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$$

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$
 $C_2 = \text{normalize}(v \times C_1)$
 $C_3 = \text{normalize}(C_1 \times C_2)$

3D Coordinate Transform

$$C = \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix}$$

Drawing - 2D Projection

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$
 $C_2 = \text{normalize}(v \times C_1)$
 $C_3 = \text{normalize}(C_1 \times C_2)$

3D Coordinate Transform

$$C = \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix}$$

Drawing - 2D Projection

 $\begin{array}{ll} \textbf{World} \\ \textbf{Coords} \end{array} \quad x^w = \begin{bmatrix} x_1^w & x_2^w & x_3^w \end{bmatrix}$

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$

$$C_2 = \text{normalize}(v \times C_1)$$

$$C_3 = \text{normalize}(C_1 \times C_2)$$

3D Coordinate Transform

$$C = \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix}$$

Drawing - 2D Projection

World Coords

$$x^w = \begin{bmatrix} x_1^w & x_2^w & x_3^w \end{bmatrix}$$

Camera Coords

$$x^c = \begin{bmatrix} x_1^c & x_2^c & x_3^c \end{bmatrix}$$

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[-0.7,-0.7], [1.0, 0.0], [0.0, 1.0]] x @ AXES

Vertical direction
$$v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$C_1 = \text{normalize}(p)$$
 $C_2 = \text{normalize}(v \times C_1)$
 $C_3 = \text{normalize}(C_1 \times C_2)$

3D Coordinate Transform

$$C = \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix}$$

Drawing - 2D Projection

$$\begin{array}{ccc} \mathbf{World} \\ \mathbf{Coords} \end{array} \quad x^w = \begin{bmatrix} x_1^w & x_2^w & x_3^w \end{bmatrix}$$

$$\begin{array}{ll} \textbf{Camera} & x^c = \begin{bmatrix} x_1^c & x_2^c & x_3^c \end{bmatrix} \end{array}$$

$$\begin{bmatrix} x_1^c & x_2^c & x_3^c \end{bmatrix} \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix} = \begin{bmatrix} x_1^w & x_2^w & x_3^w \end{bmatrix}$$

$$x^c C = x^w$$

$$\Rightarrow \qquad x^c = x^w C^{-1}$$

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[-0.7,-0.7], [1.0, 0.0], [0.0, 1.0]] x @ AXES

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$
 $C_2 = \text{normalize}(v \times C_1)$
 $C_3 = \text{normalize}(C_1 \times C_2)$

3D Coordinate Transform

$$C = \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix}$$

Drawing - 2D Projection

World Coords

$$x^w = \begin{bmatrix} x_1^w & x_2^w & x_3^w \end{bmatrix}$$

Camera Coords

$$x^c = \begin{bmatrix} x_1^c & x_2^c & x_3^c \end{bmatrix}$$

 \Rightarrow

$$x^c = x^w C^{-1}$$

$$x = [0.8, 1.0, 0.5]$$
 AXES = [[-0.7,-0.7], [1.0, 0.0], [0.0, 1.0]] x @ AXES

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$
 $C_2 = \text{normalize}(v \times C_1)$
 $C_3 = \text{normalize}(C_1 \times C_2)$

3D Coordinate Transform

$$C = \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix}$$

Code:

xc = xw @ inv(C)

Drawing - 2D Projection

World Coords

$$x^w = \begin{bmatrix} x_1^w & x_2^w & x_3^w \end{bmatrix}$$

Camera Coords

$$x^c = \begin{bmatrix} x_1^c & x_2^c & x_3^c \end{bmatrix}$$

 \Rightarrow

$$x^c = x^w C^{-1}$$

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction $v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

$$C_1 = \text{normalize}(p)$$

$$C_2 = \text{normalize}(v \times C_1)$$

$$C_3 = \text{normalize}(C_1 \times C_2)$$

3D Coordinate Transform

$$C = \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix}$$

Drawing - 2D Projection

World Coords

$$x^w = \begin{bmatrix} x_1^w & x_2^w & x_3^w \end{bmatrix}$$

Camera Coords

$$x^c = \begin{bmatrix} x_1^c & x_2^c & x_3^c \end{bmatrix}$$

$$x^c = x^w C^{-1}$$

Code:

$$xc = xw @ inv(C)$$

eyew =
$$[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]$$

$$x = [0.8, 1.0, 0.5]$$
 AXES = $[[-0.7, -0.7], [1.0, 0.0], [0.0, 1.0]]$

Viewing position $p = \begin{bmatrix} p_1 & p_2 & p_3 \end{bmatrix}$

Vertical direction
$$v = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$C_1 = \text{normalize}(p)$$

$$C_2 = \text{normalize}(v \times C_1)$$

$$C_3 = \text{normalize}(C_1 \times C_2)$$

2D Projection Transform

$$C = \begin{bmatrix} - & C_1^T & - \\ - & C_2^T & - \\ - & C_3^T & - \end{bmatrix}$$

World Coords

$$x^w = \begin{bmatrix} x_1^w & x_2^w & x_3^w \end{bmatrix}$$

Camera Coords

$$x^c = \begin{bmatrix} x_1^c & x_2^c & x_3^c \end{bmatrix}$$

$$x^c = x^w C^{-1}$$

Code:

$$xc = xw @ inv(C)$$

eyew =
$$[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]$$

Select second two columns