AA447 - Feedback Control - Spring 2021

Homework 1

Due Date: Saturday, Apr $10^{t h}, 2021$ at 11:59 pm

1. Dynamics

Consider the model of a truck pulling a trailer.

- (PTS: 0-2) Draw free body diagrams for the truck and the trailer in the above system. You can model each as a mass connected by a spring and a damper and ignore the effects of friction and drag.

- (PTS: 0-2) Use Newton's 2nd law to write equations for the acceleration of the truck and trailer.
- (PTS: 0-2) Combine these equations into a state space model with four states, the position and velocities of both the truck and trailer.

2. State-space models

Consider the state space model of the LTI system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}$ and $D \in \mathbb{R}$.

- (PTS: 0-2) Write an expression for the transfer function $G(s)$ such that the Laplace transform $Y(s)$ is given by $Y(s)=G(s) U(s)$ where $U(s)$ is the Laplace transform of the control input $u(t)$.
- (PTS: 0-2) How does the denominator of the transfer function relate to the matrix A ? How do the roots of the denominator relate to A ?
- (PTS: 0-2) Rewrite the state-space model by applying the coordinate system $x=T x^{\prime}$ for some invertible coordinate transformation $T \in \mathbb{R}^{n \times n}$. Show that the state-space model in this new coordinate system gives the same transfer function $G(s)$.

3. Laplace Transforms

Compute the Laplace transforms for the following time signals. If the time signal is in terms of arbitrary functions $f(t)$ and/or $g(t)$, your answer can be in terms of their Laplace transforms $\mathcal{L}\{f(t)\}=F(s)$ and/or $\mathcal{L}\{g(t)\}=G(s)$

- (PTS: 0-2) 1st Derivative: $\mathcal{L}\left\{\frac{d f}{d t}\right\}=$?
- (PTS: 0-2) Integral: $\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=$?
- (PTS: 0-2) Convolution: $\mathcal{L}\left\{\int_{0}^{t} g(t-\tau) f(\tau) d \tau\right\}=$?
- (PTS: 0-2) Time delay: $\mathcal{L}\{f(t-a)\}=$?

Compute the inverse Laplace transforms for the following frequency signals.

- (PTS: 0-2) $\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=$?
- (PTS: 0-2) $\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s+2)}\right\}=$?
- (PTS: 0-2) $\mathcal{L}^{-1}\left\{\frac{s}{\left(s^{2}+\omega^{2}\right)}\right\}=$?

4. Anatomy of a Transfer Function

Consider the transfer function of the form

$$
\begin{equation*}
G(s)=\frac{N(s)}{D(s)}=\frac{\left(s-z_{1}\right) \cdots\left(s-z_{k}\right)}{\left(s-\lambda_{1}\right) \cdots\left(s-\lambda_{n}\right)} \tag{1}
\end{equation*}
$$

where $z_{1}, \ldots z_{k}$ are the zeros, the roots of the numerator $N(s)$ and $\lambda_{1}, \ldots \lambda_{n}$ are the poles, the roots of the denominator or characteristic polynomial.

The frequency response for a given frequency ω is given by the complex number $G(j \omega)$ with magnitude $|G(j \omega)|$ and phase $\angle G(j \omega)$.
For a given frequency ω, we can write the terms $j \omega-z_{k}$ and $j \omega-\lambda_{\ell}$ in polar form, ie.

$$
j \omega-z_{k} \triangleq \alpha_{k}(\omega) e^{j \phi_{k}(\omega)} \quad \forall k, \quad j \omega-\lambda_{\ell} \triangleq \beta_{\ell}(\omega) e^{j \theta_{\ell}(\omega)} \quad \forall \ell
$$

Note that $\alpha_{k}, \phi_{k}, \beta_{\ell}, \theta_{\ell}$ all depend on ω.

- (PTS: 0-2) Consider the transfer function

$$
G(s)=\frac{\left(s-z_{1}\right)\left(s-z_{2}\right)}{\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)\left(s-\lambda_{3}\right)}
$$

where the poles and zeros are shown as x's and o's respectively in the following diagram.

Label

$$
\begin{array}{ll}
\alpha_{1}(\omega), \alpha_{2}(\omega), & \phi_{1}(\omega), \phi_{2}(\omega) \\
\beta_{1}(\omega), \beta_{2}(\omega), \beta_{2}(\omega), & \theta_{1}(\omega), \theta_{2}(\omega), \theta_{3}(\omega)
\end{array}
$$

for the $j \omega$ shown as the yellow diamond in the diagram above.

- (PTS: 0-2) For the general transfer function given in Equation (1) write $G(j \omega)$ in terms of $\alpha_{k}(\omega), \phi_{k}(\omega), \beta_{\ell}(\omega), \theta_{\ell}(\omega)$. How do $\alpha_{k}(\omega)$ and $\beta_{\ell}(\omega)$ affect $|G(j \omega)|$? How do $\phi_{k}(\omega)$ and $\theta_{\ell}(\omega)$ affect $\angle G(j \omega)$?
- (PTS: 0-2) Experiment with the transfer function in the visualizer given at

```
https://mathlets.org/mathlets/bode-and-nyquist-plots/
```

for different values of ω. Make sure to check the $i \omega$ check box shown. What happens to $|G(j \omega)|$ as λ_{ℓ} approaches the $j \omega$ axis? Why? What happens to $\angle G(j \omega)$ if you move z_{k} far right in the right half plane? Why?

