Homework 1

<u>Due Date</u>: Saturday, Apr 10^{th} , 2021 at 11:59 pm

1. Dynamics

Consider the model of a truck pulling a trailer.

• (PTS: 0-2) Draw free body diagrams for the truck and the trailer in the above system. You can model each as a mass connected by a spring and a damper and ignore the effects of friction and drag.

- (PTS: 0-2) Use Newton's 2nd law to write equations for the acceleration of the truck and trailer.
- (PTS: 0-2) Combine these equations into a state space model with four states, the position and velocities of both the truck and trailer.

2. State-space models

Consider the state space model of the LTI system

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times 1}$, $C \in \mathbb{R}^{1 \times n}$ and $D \in \mathbb{R}$.

- (PTS: 0-2) Write an expression for the transfer function G(s) such that the Laplace transform Y(s) is given by Y(s) = G(s)U(s) where U(s) is the Laplace transform of the control input u(t).
- (PTS: 0-2) How does the denominator of the transfer function relate to the matrix A? How do the roots of the denominator relate to A?
- (PTS: 0-2) Rewrite the state-space model by applying the coordinate system x = Tx' for some invertible coordinate transformation $T \in \mathbb{R}^{n \times n}$. Show that the state-space model in this new coordinate system gives the same transfer function G(s).

3. Laplace Transforms

Compute the Laplace transforms for the following time signals. If the time signal is in terms of arbitrary functions f(t) and/or g(t), your answer can be in terms of their Laplace transforms $\mathcal{L}{f(t)} = F(s)$ and/or $\mathcal{L}{g(t)} = G(s)$

- (PTS: 0-2) 1st Derivative: $\mathcal{L}\left\{\frac{df}{dt}\right\} = ?$
- (PTS: 0-2) Integral: $\mathcal{L}\left\{\int_0^t f(\tau) d\tau\right\} = ?$
- (PTS: 0-2) Convolution: $\mathcal{L}\left\{\int_0^t g(t-\tau)f(\tau) \ d\tau\right\} = ?$
- (PTS: 0-2) Time delay: $\mathcal{L}\{f(t-a)\} = ?$

Compute the inverse Laplace transforms for the following frequency signals.

- (PTS: 0-2) $\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = ?$
- (PTS: 0-2) $\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s+2)}\right\} = ?$
- (PTS: 0-2) $\mathcal{L}^{-1}\left\{\frac{s}{(s^2+\omega^2)}\right\} = ?$

4. Anatomy of a Transfer Function

Consider the transfer function of the form

$$G(s) = \frac{N(s)}{D(s)} = \frac{(s - z_1) \cdots (s - z_k)}{(s - \lambda_1) \cdots (s - \lambda_n)} \tag{1}$$

where $z_1, \ldots z_k$ are the zeros, the roots of the numerator N(s) and $\lambda_1, \ldots, \lambda_n$ are the poles, the roots of the denominator or characteristic polynomial.

The frequency response for a given frequency ω is given by the complex number $G(j\omega)$ with magnitude $|G(j\omega)|$ and phase $\angle G(j\omega)$.

For a given frequency ω , we can write the terms $j\omega - z_k$ and $j\omega - \lambda_\ell$ in polar form, ie.

$$j\omega - z_k \triangleq \alpha_k(\omega) e^{j\phi_k(\omega)} \quad \forall k, \qquad j\omega - \lambda_\ell \triangleq \beta_\ell(\omega) e^{j\theta_\ell(\omega)} \quad \forall \ell$$

Note that $\alpha_k, \phi_k, \beta_\ell, \theta_\ell$ all depend on ω .

• (PTS: 0-2) Consider the transfer function

$$G(s) = \frac{(s - z_1)(s - z_2)}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)}$$

where the poles and zeros are shown as x's and o's respectively in the following diagram.

Label

$$\begin{aligned} \alpha_1(\omega), \alpha_2(\omega), & \phi_1(\omega), \phi_2(\omega) \\ \beta_1(\omega), \beta_2(\omega), \beta_2(\omega), & \theta_1(\omega), \theta_2(\omega), \theta_3(\omega) \end{aligned}$$

for the $j\omega$ shown as the yellow diamond in the diagram above.

- (PTS: 0-2) For the general transfer function given in Equation (1) write $G(j\omega)$ in terms of $\alpha_k(\omega), \phi_k(\omega), \beta_\ell(\omega), \theta_\ell(\omega)$. How do $\alpha_k(\omega)$ and $\beta_\ell(\omega)$ affect $|G(j\omega)|$? How do $\phi_k(\omega)$ and $\theta_\ell(\omega)$ affect $\angle G(j\omega)$?
- (PTS: 0-2) Experiment with the transfer function in the visualizer given at

https://mathlets.org/mathlets/bode-and-nyquist-plots/

for different values of ω . Make sure to check the $i\omega$ check box shown. What happens to $|G(j\omega)|$ as λ_{ℓ} approaches the $j\omega$ axis? Why? What happens to $\angle G(j\omega)$ if you move z_k far right in the right half plane? Why?

