
AA447 - Feedback Control - Spring 2021

Homework 2

Due Date: Thursday, Apr 15th, 2021 at 11:59 pm
.

Cruise Control Model
Consider a car that is moving up a hill while on cruise control. Denoting the force produced by the
engine as the input, u(t), and the vehicle’s speed as the output, y(t), we can model the vehicle as follows:

v̇(t) = −1

τ
v(t) +

1

m

[
u(t) + d(t)

]
(1)

y(t) = v(t) + n(t) (2)

Assume:

• The mass of the car is m = 1000kg

• The time constant of the system is τ = 10s

• The gravitational constant is g = 9.81m/s2

• The system is subject to a disturbance d(t)

• The speed measurement y(t) is corrupted by sensor noise n(t)

1. Simulation
For this problem, assume the following:

• The disturbance is given by d(t) = −mg sin(θ)− αv2(t)

• The noise is given by n(t) = 0

• The initial condition is v(0) = 0m/s

Do the following:

(a) (PTS: 0-2) Let u(t) = 100. For θ = 10◦ and α = 0.5kg/m, use MATLAB’s ode45 function
(or a Python equivalent) to integrate Eq. 1 over t ∈ [0, 30]s. Provide your code.

(b) (PTS: 0-2) Provide plots for y(t) and d(t) for the conditions given in part (a).
(c) (PTS: 0-2) Provide a qualitative explanation of the role τ has on the output y(t). For

example, set α = 0kg/m and θ = 0◦, and experiment with different (positive) values of τ .
(d) (PTS: 0-2) Set α = 750kg/m and θ = 0◦. Simulate and plot y1(t), y2(t), and y3(t) for

u1(t) = 100 sin(2π6 t), u2(t) = 100 sin(2π10 t), and u3(t) = u1(t) + u2(t). Additionally, plot
y1(t) + y2(t) on the same plot. Does y3(t) match y1(t) + y2(t)?

(e) (PTS: 0-2) Repeat part (d) with α = 0kg/m. Does y3(t) match y1(t) + y2(t) in this case?
Explain why this result differs from that in part (d).



2. Open-Loop Control

Now, let’s consider an open-loop control system with the control law:

u(t) = kOLvref (3)

where kOL is the open-loop gain, and vref is the reference velocity. For this problem, assume that
n(t) = 0, θ = 0◦, and α = 0kg/m. Do the following:

(a) (PTS: 0-2) What value should kOL have such that v(t) converges to vref? Give your answer
symbolically (i.e. in terms of variables m, τ , etc.).
HINT: Plug Eq. 3 into Eq. 1, and select kOL such that the resulting equation exponentially
decays to vref . That is, select kOL such that you can express Eq. 1 in the following form:

v̇(t) = −β
[
v(t)− vref (t)

]
with β > 0

(b) (PTS: 0-2) Using the value of kOL obtained in part (a), assume v(0) = 10m/s and vref =

30m/s. Turn in a plot of y(t) for t ∈ [0, 30]s. Include a dotted horizontal line that represents
the value of vref .

(c) (PTS: 0-2) Now, keep the same kOL as in part (a). Increase m by 25%. What do you notice
in the response of y(t)? Provide a plot for this case (as you did in part (b)).

(d) (PTS: 0-2) Repeat part (c), but this time keep the original m, and set θ = 15◦.

3. Closed-Loop PI Control

Notice that in the last problem, the control law did not use the measurement y(t), and hence was
termed an open-loop control law. Now, consider a closed-loop system, where the control law is a
function of y(t) and is given by:

u(t) = kCL (vref − y(t)) (4)

where kCL is the closed-loop control gain. Unless otherwise specified, assume n(t) = 0, θ = 0◦,
and α = 0kg/m. Assume v(0) and vref are the same as in Problem 2. Do the following:

(a) (PTS: 0-2) Through experimentation, find a value of kCL that results v(t) converging to a
value (ideally the value v(t) converges to is close to vref ). What are the effects of increasing
and decreasing kCL by 50%? Report the numbers of kCL you used, and provide a plot of y(t)
vs. t for all three cases. Plot all three cases on the same set of axes.

(b) (PTS: 0-2) Are there values of kCL that cause the system to diverge (i.e. where v(t) grows
indefinitely)? If so, what seems to be the boundary of stability?
HINT: You can follow a procedure similar to the one you followed in Problem 2a to obtain
a differential equation. From there, you can deduce the value of kCL that will result in
divergent behavior.

(c) (PTS: 0-2) Repeat Problem 2c for the closed-loop case. Compare your results to the open-
loop case.

(d) (PTS: 0-2) Repeat Problem 2d for the closed-loop case. Compare your results to the open-
loop case.



(e) (PTS: 0-2) Which control law seems more robust to variations in θ and m? Given your
results, what does closed-loop control seem to provide that open-loop control lacks?

(f) (PTS: 0-2) Assume that n(t) = 10 sin (2πt), θ = 0◦, and use the original mass m. Re-run
the simulation using the three values of kCL you used in part (a). What seems to be the
disadvantage of increasing kCL when noise is corrupting the feedback signal y(t)?

(g) (PTS: 0-2) Lastly, assume that n(t) = 0. Notice that the proportional control law proposed
above produces a non-zero steady-state error. That is, v(t) does not match vref as t → ∞.
Modify the control law and your simulation to incorporate an integral term, as follows:

u(t) = kCL (vref − y(t)) + kI

∫ t

0
[vref − y(τ)]dτ (5)

Through experimentation select a positive value for kI . You can use any of the previous
values you used for kCL. Can you make the steady-state error disappear? Provide your code,
a plot of y(t) versus t, and a plot of u(t) versus time.

4. Double Integrator PID Model
Suppose we are given double integrator dynamics,

mÿ(t) = u(t) + d(t)

where disturbance is given by d(t). We consider using PID control for the system, whose input is
ξ(t) = yref (t)− y(t),

u(t) = kpξ(t) + kdξ̇(t) + kI

∫ t

0
ξ(τ)dτ+

(a) (PTS:0-2) Draw the block diagram of the closed loop system, label each signals
(b) (PTS:0-2) Write a state space model of the double integrator dynamics in the form

ẋ = Ax+Bu

y = Cx

with x ∈ R3, ie. add an augmented state so that the PID controller can be written as u = Kx.
What is K (symbollically) for the PID controller?

(c) (PTS:0-2) Derive the transfer functions
• Plant: from U to Y , G(s) = Y (s)

U(s) .

• Control: from Ξ (uppercase ξ) to U , C(s) = U(s)
Ξ(s) .

• Loop TF: from Ξ to Y , L(s) = Y (s)
Ξ(s) = G(s)C(s).

(d) (PTS:0-2) Derive the transfer functions
• from disturbance D to output Y : T (s) = Y (s)

D(s) .

• from reference Yref to output Y : R(s) = Y (s)
Yref (s)

.
(e) (PTS:0-2) Let m = 1 and kp = kd = kI = 2. Create bode magnitude plots for the transfer

functions L(s), T (s), and R(s). What are the poles of each transfer function? (They should
be the same for all three transfer functions.) Is the system stable?


