AA447 - Feedback Control - Spring 2021

Homework 2

Due Date: Thursday, Apr $15^{\text {th }}, 2021$ at 11:59 pm

Cruise Control Model

Consider a car that is moving up a hill while on cruise control. Denoting the force produced by the engine as the input, $u(t)$, and the vehicle's speed as the output, $y(t)$, we can model the vehicle as follows:

$$
\begin{align*}
& \dot{v}(t)=-\frac{1}{\tau} v(t)+\frac{1}{m}[u(t)+d(t)] \tag{1}\\
& y(t)=v(t)+n(t) \tag{2}
\end{align*}
$$

Assume:

- The mass of the car is $m=1000 \mathrm{~kg}$
- The time constant of the system is $\tau=10 s$
- The gravitational constant is $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- The system is subject to a disturbance $d(t)$
- The speed measurement $y(t)$ is corrupted by sensor noise $n(t)$

1. Simulation

For this problem, assume the following:

- The disturbance is given by $d(t)=-m g \sin (\theta)-\alpha v^{2}(t)$
- The noise is given by $n(t)=0$
- The initial condition is $v(0)=0 \mathrm{~m} / \mathrm{s}$

Do the following:
(a) (PTS: 0-2) Let $u(t)=100$. For $\theta=10^{\circ}$ and $\alpha=0.5 \mathrm{~kg} / \mathrm{m}$, use MATLAB's ode 45 function (or a Python equivalent) to integrate Eq. 1 over $t \in[0,30] s$. Provide your code.
(b) (PTS: 0-2) Provide plots for $y(t)$ and $d(t)$ for the conditions given in part (a).
(c) (PTS: 0-2) Provide a qualitative explanation of the role τ has on the output $y(t)$. For example, set $\alpha=0 \mathrm{~kg} / \mathrm{m}$ and $\theta=0^{\circ}$, and experiment with different (positive) values of τ.
(d) (PTS: 0-2) Set $\alpha=750 \mathrm{~kg} / \mathrm{m}$ and $\theta=0^{\circ}$. Simulate and plot $y_{1}(t), y_{2}(t)$, and $y_{3}(t)$ for $u_{1}(t)=100 \sin \left(\frac{2 \pi}{6} t\right), u_{2}(t)=100 \sin \left(\frac{2 \pi}{10} t\right)$, and $u_{3}(t)=u_{1}(t)+u_{2}(t)$. Additionally, plot $y_{1}(t)+y_{2}(t)$ on the same plot. Does $y_{3}(t)$ match $y_{1}(t)+y_{2}(t)$?
(e) (PTS: 0-2) Repeat part (d) with $\alpha=0 \mathrm{~kg} / \mathrm{m}$. Does $y_{3}(t)$ match $y_{1}(t)+y_{2}(t)$ in this case? Explain why this result differs from that in part (d).

2. Open-Loop Control

Now, let's consider an open-loop control system with the control law:

$$
\begin{equation*}
u(t)=k_{O L} v_{r e f} \tag{3}
\end{equation*}
$$

where $k_{O L}$ is the open-loop gain, and $v_{r e f}$ is the reference velocity. For this problem, assume that $n(t)=0, \theta=0^{\circ}$, and $\alpha=0 \mathrm{~kg} / \mathrm{m}$. Do the following:
(a) (PTS: 0-2) What value should $k_{O L}$ have such that $v(t)$ converges to $v_{r e f}$? Give your answer symbolically (i.e. in terms of variables m, τ, etc.).
HINT: Plug Eq. 3 into Eq. 1, and select $k_{O L}$ such that the resulting equation exponentially decays to $v_{r e f}$. That is, select $k_{O L}$ such that you can express Eq. 1 in the following form:

$$
\dot{v}(t)=-\beta\left[v(t)-v_{r e f}(t)\right] \quad \text { with } \quad \beta>0
$$

(b) (PTS: 0-2) Using the value of $k_{O L}$ obtained in part (a), assume $v(0)=10 \mathrm{~m} / \mathrm{s}$ and $v_{r e f}=$ $30 \mathrm{~m} / \mathrm{s}$. Turn in a plot of $y(t)$ for $t \in[0,30] \mathrm{s}$. Include a dotted horizontal line that represents the value of $v_{r e f}$.
(c) (PTS: 0-2) Now, keep the same $k_{O L}$ as in part (a). Increase m by 25%. What do you notice in the response of $y(t)$? Provide a plot for this case (as you did in part (b)).
(d) (PTS: 0-2) Repeat part (c), but this time keep the original m, and set $\theta=15^{\circ}$.

3. Closed-Loop PI Control

Notice that in the last problem, the control law did not use the measurement $y(t)$, and hence was termed an open-loop control law. Now, consider a closed-loop system, where the control law is a function of $y(t)$ and is given by:

$$
\begin{equation*}
u(t)=k_{C L}\left(v_{r e f}-y(t)\right) \tag{4}
\end{equation*}
$$

where $k_{C L}$ is the closed-loop control gain. Unless otherwise specified, assume $n(t)=0, \theta=0^{\circ}$, and $\alpha=0 \mathrm{~kg} / \mathrm{m}$. Assume $v(0)$ and $v_{r e f}$ are the same as in Problem 2. Do the following:
(a) (PTS: 0-2) Through experimentation, find a value of $k_{C L}$ that results $v(t)$ converging to a value (ideally the value $v(t)$ converges to is close to $v_{r e f}$). What are the effects of increasing and decreasing $k_{C L}$ by 50% ? Report the numbers of $k_{C L}$ you used, and provide a plot of $y(t)$ vs. t for all three cases. Plot all three cases on the same set of axes.
(b) (PTS: 0-2) Are there values of $k_{C L}$ that cause the system to diverge (i.e. where $v(t)$ grows indefinitely)? If so, what seems to be the boundary of stability?
HINT: You can follow a procedure similar to the one you followed in Problem 2a to obtain a differential equation. From there, you can deduce the value of $k_{C L}$ that will result in divergent behavior.
(c) (PTS: 0-2) Repeat Problem 2c for the closed-loop case. Compare your results to the openloop case.
(d) (PTS: 0-2) Repeat Problem 2d for the closed-loop case. Compare your results to the openloop case.
(e) (PTS: 0-2) Which control law seems more robust to variations in θ and m ? Given your results, what does closed-loop control seem to provide that open-loop control lacks?
(f) (PTS: 0-2) Assume that $n(t)=10 \sin (2 \pi t), \theta=0^{\circ}$, and use the original mass m. Re-run the simulation using the three values of $k_{C L}$ you used in part (a). What seems to be the disadvantage of increasing $k_{C L}$ when noise is corrupting the feedback signal $y(t)$?
(g) (PTS: 0-2) Lastly, assume that $n(t)=0$. Notice that the proportional control law proposed above produces a non-zero steady-state error. That is, $v(t)$ does not match $v_{r e f}$ as $t \rightarrow \infty$. Modify the control law and your simulation to incorporate an integral term, as follows:

$$
\begin{equation*}
u(t)=k_{C L}\left(v_{r e f}-y(t)\right)+k_{I} \int_{0}^{t}\left[v_{r e f}-y(\tau)\right] d \tau \tag{5}
\end{equation*}
$$

Through experimentation select a positive value for k_{I}. You can use any of the previous values you used for $k_{C L}$. Can you make the steady-state error disappear? Provide your code, a plot of $y(t)$ versus t, and a plot of $u(t)$ versus time.

4. Double Integrator PID Model

Suppose we are given double integrator dynamics,

$$
m \ddot{y}(t)=u(t)+d(t)
$$

where disturbance is given by $d(t)$. We consider using PID control for the system, whose input is $\xi(t)=y_{\text {ref }}(t)-y(t)$,

$$
u(t)=k_{p} \xi(t)+k_{d} \dot{\xi}(t)+k_{I} \int_{0}^{t} \xi(\tau) d \tau+
$$

(a) (PTS:0-2) Draw the block diagram of the closed loop system, label each signals
(b) (PTS:0-2) Write a state space model of the double integrator dynamics in the form

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

with $x \in \mathbb{R}^{3}$, ie. add an augmented state so that the PID controller can be written as $u=K x$. What is K (symbollically) for the PID controller?
(c) (PTS:0-2) Derive the transfer functions

- Plant: from U to $Y, G(s)=\frac{Y(s)}{U(s)}$.
- Control: from Ξ (uppercase ξ) to $U, C(s)=\frac{U(s)}{\Xi(s)}$.
- Loop TF: from Ξ to $Y, L(s)=\frac{Y(s)}{\Xi(s)}=G(s) C(s)$.
(d) (PTS:0-2) Derive the transfer functions
- from disturbance D to output $Y: T(s)=\frac{Y(s)}{D(s)}$.
- from reference $Y_{\text {ref }}$ to output $Y: R(s)=\frac{Y(s)}{Y_{r e f}(s)}$.
(e) (PTS:0-2) Let $m=1$ and $k_{p}=k_{d}=k_{I}=2$. Create bode magnitude plots for the transfer functions $L(s), T(s)$, and $R(s)$. What are the poles of each transfer function? (They should be the same for all three transfer functions.) Is the system stable?

