AA447-Feedback Control - Spring 2021

Homework 5

Due Date: Wednesday, May $12^{\text {th }}, 2021$ at 11:59 pm

1. Time Delay

(a) (PTS:0-2) Prove the time delay property of the Laplace transform. I.e. let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a generic time domain function, if

$$
y(t)=f(t-\tau) u_{\text {step }}(t-\tau)
$$

Show that

$$
Y(s)=e^{-\tau s} F(s)
$$

(b) (PTS:0-2) Consider a system transfer function $G(s)$ and with a time delay of τ seconds added in series as shown below.

How do the magnitude and phase of the frequency response change for a given frequency ω ?

2. Nyquist Plots

Sketch Nyquist plots for the following systems by hand by computing the following points

- $\omega=0, \omega=\infty$
- Re-axis intercept, Im-axis intercept
- Min/max of real component
- Min/max of imaginary component
(You can check your results using Matlab or an online visualizer.)
https://mathlets.org/mathlets/bode-and-nyquist-plots/
Decide from the Nyquist plot if the closed-loop system is stable.
(a) (PTS: 0-2)

$$
L(s)=\frac{1}{(s-2)}
$$

(b) (PTS: 0-4)

$$
L(s)=\frac{1}{(s-1)(s-2)}
$$

(c) (PTS: 0-4)

$$
L(s)=\left(k_{p}+\frac{k_{I}}{s}\right) \frac{1}{(s-1)}
$$

Choose two sets of values for k_{p} and k_{I} : one set that makes the system stable and one set that makes it unstable and note how the Nyquist plot changes between the two.
(d) (PTS: 0-6)

$$
L(s)=\left(k_{p}+k_{d} s+\frac{k_{I}}{s}\right) \frac{1}{(s-1)(s-2)}
$$

Choose two sets of values for k_{p}, k_{d}, and k_{I},: one set that makes the system stable and one set that makes it unstable and note how the Nyquist plot changes between the two.

3. Nyquist Stability

Let $G: \mathbb{C} \rightarrow \mathbb{C}$ be a rational function from the complex plane to itself. Let $\Gamma \subset \mathbb{C}$ be a closed clockwise contour in the complex plane and let $G(\Gamma)$ be the image of that contour under the map $G(s)$.
The Cauchy Argument principle says that

$$
\begin{aligned}
& \text { Num. of times } \\
& G(\Gamma) \text { circles } 0 \\
& \text { (clockwise) }
\end{aligned}=\begin{gathered}
\text { Zeros } \\
\text { inside } \Gamma
\end{gathered} \quad-\quad \text { Poles } \quad \text { inside } \Gamma
$$

Let $L(s)=C(s) G(s)$ be the open-loop transfer function for a system with plant $G(s)$ and controller $C(s)$ and let Γ_{N} be the Nyquist contour that encircles the right-half of the complex plane.
(PTS:0-6) Prove the Nyquist stability criteria that states that the closed-loop system is stable if

$$
\begin{array}{cc}
\text { Num. of times } & \text { Poles } \\
L\left(\Gamma_{\mathrm{N}}\right) \text { circles -1 } \\
\text { counter-clockwise } & =\text { of } L(s) \\
\text { inside } \Gamma_{\mathrm{N}}
\end{array}
$$

4. State-Space Realizations

Consider a plant $G(s)$, PID controller $C(s)$, and open-loop transfer function $L(s)$.

$$
G(s)=\frac{1}{m s^{2}}, \quad C(s)=k_{d} s+k_{p}+\frac{k_{I}}{s}, \quad L(s)=G(s) C(s)
$$

Write a separate state-space minimal realization for the following transfer functions
(a) (PTS:0-2)

$$
L(s)
$$

(b) (PTS:0-2)

$$
\frac{1}{1+L(s)}
$$

(c) (PTS:0-2)

$$
\frac{L(s)}{1+L(s)}
$$

(d) (PTS:0-2)

$$
\frac{G(s)}{1+L(s)}
$$

