

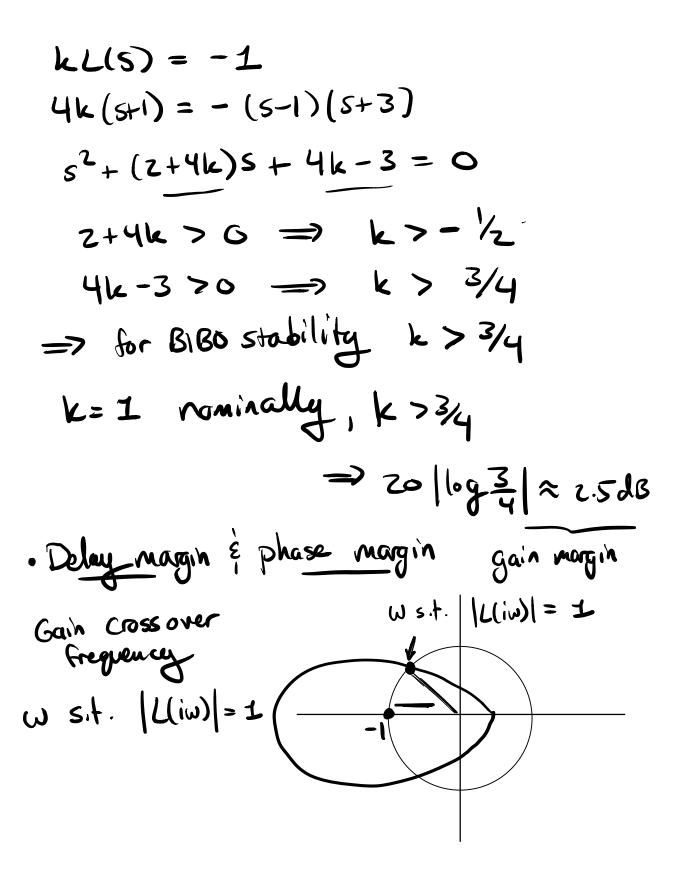
Can this cause the closed - loop system
to become unstable?
In general: yes...
but for this TF...?
Delayed, Loop TF: time : I seconds
$$e^{Ts}L(s)$$
 plass
on imag axis time free t input
 $\left|e^{-iTw}L(iw)\right| = \left|e^{-iTw}\right| \left|L(iw)\right| = \left|L(iw)\right|$
 $\leq e^{iTw}L(iw)\right| = \left|e^{-iTw} + \left|XL(iw)\right| = \left|L(iw)\right|$
 $= -Tw + \left|XL(iw)\right|$
Since Mygust plot is inside the unit circle
 \Rightarrow cannot be destabilized by adding
a phase shift or a pure delay
 \Rightarrow Extremely robust to time delay.
 \Rightarrow has infinite delay margin

=) has infinite phase magin No nather how much delay or phase we add we can't destabilize the sys. It is possible to destabilize the sys by multiplying by a constant k By examining Myquist plot: the TF KL(S) is closed loop unstable if k z z or k E - 3 unstable if k e (-3,2) stable => The gain margin is 20 log 2 = 6 dB if Myquist plot goes through s = -1 ie. there exists w st. L(iw) = -1 ⇒ S = ±in are closed loop poles => closed loop sys is not BIBO stable

$$k U(s) = \frac{k(s-1)}{(s+1)(s+2)}$$

$$kL(s) = -1$$

$$k(s-1) = -1 \implies s^{2}+3s+2+ks-k=0$$


$$(s+1)(s+2) \qquad s^{2}+(3+k)s+2-k=0$$

$$guadratic : 3+k>0 \implies k>-3$$

$$2-k>0 \qquad k<2$$

$$3.14 = 180^{\circ}$$

Ex.
$$L(5) = \frac{4(s+1)}{(s-1)(s+3)}$$

 $L(5) = -1 \implies s^2 + 2s - 3 + 4s + 4 = 0$
 $s^2 + 6s + 1 = 0$
 $roots = -6 \pm \sqrt{3(-4)}$
 $= -3 \pm \sqrt{8} \implies stable$
what values of k would cause k L(s)
 $to be unstable$

$$|\mathcal{L}(i\omega)| = \left|\frac{4(s+i)}{(s-i)(s+3)}\right| = \frac{4|i\omega+i|}{|i\omega-i||i\omega+3|} = \frac{4|\omega+i|}{|i\omega+3|} = \frac{4|\omega+i|}{|i\omega+i|} = \frac{4|\omega+i|}{|i\omega+i|$$

=>
$$T \approx 0.641$$
 sees -5 delay magin
phase magin
 $T W_{gc} = 0.641 \text{ s J7 nJ}$ amount of delay
you can tolerate
while still having
 $= 1.7 \text{ rad} = 97^{\circ}$
Phase margin $= 97^{\circ}$
Phase margin $= 97^{\circ}$
 $W_{gc} = -J7$
 $g_{1^{\circ}}$ $W_{gc} = -J7$
 $g_{1^{\circ}}$ $W_{gc} = J7$