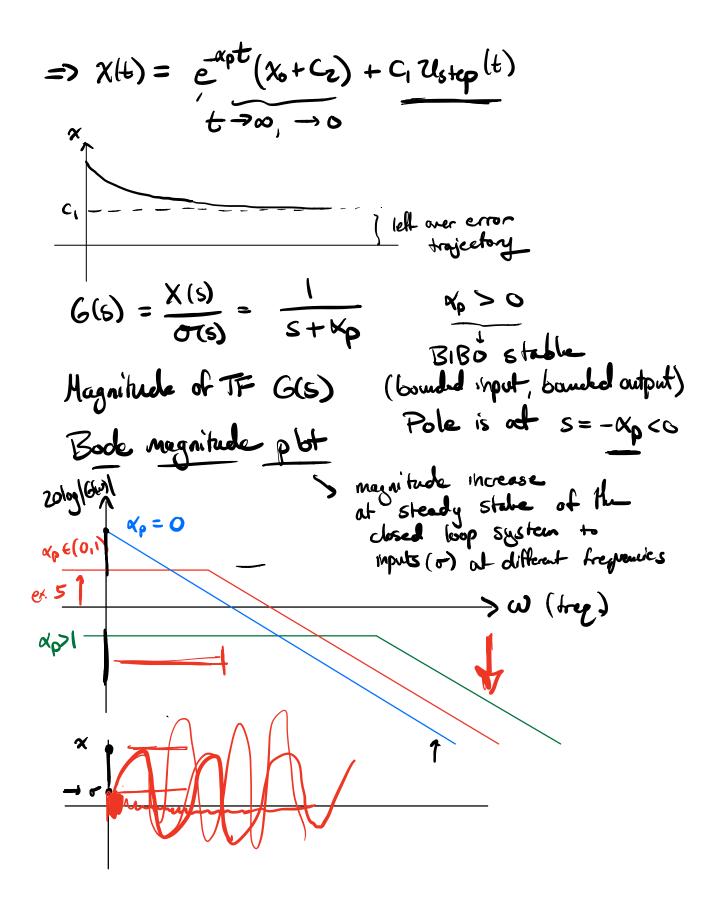


since
$$x_p$$
 depends on m ...
This control algorithm is robust to uncertainly
due to mass variation as long as Vd
is constraint (piece wise constant in the)
 v_0
 v_0

.



if there is no control:
$$x_p = 0$$

 $\dot{x} = \sigma \implies x(t) = \sigma t$
 $\lim_{x \to \infty} x(t) = \infty$ macaptable
 $t \Rightarrow \infty$
Suppose Vd is not constant...
 $\Rightarrow \dot{x} = \dot{v} - \dot{v}d = -\alpha_p x + \sigma - \dot{v}d$
mew distarbance
 $v_{a} \Rightarrow port of$
 $controller for $v_{a} \Rightarrow port of$
 $disturbance$ rejection
Another source of trouble: measurement
 $y = v + n$
 $\Rightarrow \dot{x} = -\alpha_p x + \sigma - \dot{v}d + \alpha_p n$
never disturbance
Choosely a large α_p complifies the effect
of noise ...$

Var
$$\bigcirc$$
 Var \bigcirc Controller \oint \oint \bigcirc Plant $\stackrel{\text{Plant}}{\longrightarrow}$ $\stackrel{\text{Plant}$

$$(1 + G(s)C(s))V(s) = G(s)C(s)[V_{d}(s) - N(s)] + G(s)D(s)$$

$$V(s) = \frac{G(s)C(s)}{1 + G(s)C(s)}[V_{d}(s) - N(s)] + \frac{G(s)}{1 + G(s)C(s)}D(s)$$

$$I + \frac{G(s)C(s)}{1 + G(s)C(s)}[V_{d}(s) - N(s)] + \frac{G(s)}{1 + G(s)C(s)}D(s)$$

$$I = \frac{G(s)C(s)}{1 + G(s)C(s)}[V_{d}(s) - N(s)] + \frac{G(s)}{1 + G(s)C(s)}$$

$$T(s) = \frac{G(s)C(s)}{1 + G(s)C(s)}R(s) = \frac{G(s)}{1 + G(s)C(s)}$$

$$T(s) = \frac{L(s)}{1 + C(s)}R(s) = \frac{G(s)}{1 + L(s)}$$

$$V(s) = T(s)(V_{d}(s) - N(s)) + R(s)D(s)$$

what do we would
$$T(s) \notin R(s)$$
 to bok lik?
Performance Criteria:
- tracking (track Vd closely): $T(s) \approx 1 | X$
- noise fillering.: $T(s) \approx 0 | X$
- distribunce rejection: $R(s) \approx 0 |$
frequency dependent relationships...
design $T(s)$, $R(s)$ to have different properties
at different frequency (desired velocity
 $0 \cos t + 0 \cos t = 0$
N(s): high frequency (some external
 $0 \cos t + 0 \cos t = 0$
 $T(s) \approx 1 | - 10w$ freq. $good tracking - 0$
 $T(s) \approx 0 | - 10w$ freq. noise filtering.
 $T(s) \approx 0 | - 10w$ freq. noise filtering.
 $T(s) \approx 0 | - 10w$ freq. $T(s) = \frac{C(s)}{1 + L(s)}$

