Stability Criteria: Routh-Hurwitz
Herwitz matrix \Rightarrow stable
TE:
Loop TF: $L(s)=C(s) G(s)$

$$
T(s)=\frac{L(s)}{1+L(s)} \quad R(s)=\frac{G(s)}{1+L(s)}
$$

Stability: $\underset{>}{\text { roots of } 1+L(s)=0}$ in OLHP open left half plane. $1+L(s)=a s^{2}+b s+c \Rightarrow$ quadratic eq.
what if

$$
1+L(s)=p_{0} s^{n}+p_{1} s^{n-1}+p_{2} s^{n-2}+\cdots
$$

PID Controller:

$$
1+L(s)=m s^{3}+k_{d} s^{2}+k_{P} s+k_{I}=0
$$

Goal: bounds on gains that maintain stability.
Necessary: $m>0, k_{d}>0, k_{p}>0, k_{I}>0$

$$
\cdots\left(s+\lambda_{1}\right) \cdots\left(s+\lambda_{n}\right)=s^{n}+\square s^{n-1}
$$

roots negative real parts \rightarrow positive coeffs
not roots $\bar{\omega}$
neg. real parts coifs
(proof by contrapositive)
ASIDE:

$$
7_{1} \sim_{1} \text { ! : "not" }
$$

STATEMENT : I contra positive
if p then q Equiv.
if $\sim q$ then $\sim p$
$(p \Rightarrow q) \sim \sim \sim_{1} \leadsto \sim$
INVERSE $*$ ICONVERSE if $\sim p$ then $\sim q$ Equal if q then p

$$
\sim p \Rightarrow \sim q \quad q \Rightarrow p
$$

$\left[\begin{array}{l}\text { statement: } q \text { is true if } p . \\ \text { inverse: } q \text { is true only it } p \\ \text { both: } q \text { if }\end{array}\right.$
both: ε if and only if $p(q$ iff $p)$ $(q \Longleftrightarrow p$
iff: necessary ε i sufficient conditions

$$
p \Leftrightarrow q \quad \text { necessary: } \quad p \Leftarrow q
$$

sufficient: $P \Longrightarrow q$
$m>0, k d>0, k_{p}>0, k I>0$ not enough to guarameer stability
What is enough to guarantee stability (sufficient)
Polynomials
Ex. poly degree...
1D 2D SD 40 FD

$$
\begin{array}{cc}
p_{0} s+p_{1} \quad P_{0} s^{2}+p_{1} s+p_{2} \\
s^{2}+p_{2}=0 \\
\left(s-i \sqrt{p_{2}}\right)\left(s+i \sqrt{p_{2}}\right)=0
\end{array}
$$

Notes: n deg poly.

- n degree polynomial: n roots
- if n is odd \rightarrow go off to ∞ in different directions if n is even
max degree sameetion

Odd: Even Functions:
$f(s)$ is even if $f(-s)=f(s)$
$f(s)$ is odd if $f(-s)=-f(s)$
Ex.
$\cos (s)$ Even Functions

polyromels

Form
n =even

$$
p_{0} s^{n}+p_{2} s^{n-2}+\cdots
$$

even powers of s only
sign doesn't matter

Odd functions

$$
p_{0} s^{n+1}+p_{2} s^{n-1}+p_{4} s^{n-3}+\cdots
$$

odd power of s only
sign does matter

Routh-Hwwitz: (PROCEDURE)
Ex. $\quad 2 s^{5}+8 s^{4}+4 s^{3}+10 s^{2}+6 s+12=0$
Table: $\max \mathrm{deg}$ odd

\Uparrow look at first column.

is this poly nomial stable? \Rightarrow NO
In Matab:
$>\operatorname{coots}\left(\left[\begin{array}{lllllll}2 & 8 & 4 & 10 & 6 & 12 & 1\end{array}\right)\right.$ roots -3.79
\longrightarrow vector repres. of polynomed

$$
\begin{aligned}
& -3.79 \\
& \frac{0.52}{-0.62} \pm i(1.01) \\
& \hline(0.91)
\end{aligned}
$$

PID Controller: plex eiganumes in conjugates (porlynomials $\bar{\omega}$ real coeffs)

$$
m s^{3}+k_{d} s^{2}+k_{p} s+k_{I}=0
$$

Table:

| s^{3} | m | k_{p} |
| :--- | :--- | :--- | :--- |
| s^{2} | k_{d} | k_{I} |
| s^{1} | $\frac{k_{p} k_{d}-m k_{f}}{k_{d}}$ | 0 |
| s^{0} | k_{I} | |

Betore:
$m>0, k d>0$,

$$
k_{p}>0, k_{I}>0
$$

${ }^{\circ}$ Now

$$
\begin{aligned}
& m>0, k_{d}>0, k_{I}>0 \\
& k_{p} k_{d}-m k_{I} \\
& k_{d}
\end{aligned} 0
$$

clearly: k_{p} must be >0 alsoneed: $k_{p} k_{d}>m k_{I}$
PID control:

Intuition

- largemass \rightarrow requires large k_{p} and/or $k d$
- lane $k_{I} \rightarrow$ destabilize system is $k_{p} ; k_{d}$ cren't big enough
- lowering $k p$ or $k d$ too much" \rightarrow destabilize... relative to M and k_{I}
- etc.

Ex: $\quad s^{3}+2 s^{2}+s+2=0$
Table
if 0 in the 1st col...
add $\varepsilon>0$

s^{3}	1	1
s^{2}	2	2
$-s^{1}$	$\mid \varepsilon>0$	0
s^{0}	2	

Roots:

$$
-2, \pm i
$$

\Rightarrow no sign change in 1st columns
if zero in 1st col \Rightarrow root ω zero real part. on image axis
(only marginally stable)

