Stability Criteria: Routh-Hurwitz Hurwitz matrix => stable TF: Loop TF: L(s) = C(s)G(s) $T(s) = \frac{L(s)}{1+L(s)}$ $R(s) = \frac{G(s)}{1+L(s)}$ Stability: roots of I+L(s) = 0 > in OLHP open reft half plane. 1+L(s) = as2 + bs + c => quadratic eqn. whit $\pm + L(s) = p_{0}s^{2} + p_{1}s^{-1} + p_{2}s^{-2} + \cdots$ $1+L(s) = Ms^{3}+k_{d}s^{2}+k_{p}s+k_{I}=0$ PID Controller: Good: bounds on gains that maintain stability. Necessary: M>0, kd>0, kp>0, kI>0 $-(s+\lambda_1)\cdots(s+\lambda_n) = s^n + (s^{n-1}) = - (s^{n-1})$

is this polynomial stable?
$$\Rightarrow$$
 [NO]
In Mathab:
 \Rightarrow roots ([284 106 12])
roots -3.79
 $6.52\pm i(1.01)$
 $-0.62\pm i(0.91)$] \Rightarrow vector repres.
 f polynomial
 $0.52\pm i(0.91)$] \Rightarrow complex eigenvalues
in conjugates
 $pairs$
 $ms^{3}+k_{4}s^{2}+k_{5}s+k_{5}=0$
Table:
 s^{3} [M] k_{p} $mov_{0}, k_{4}>0, k_{5}>0$
 s^{2} k_{4} k_{T} now
 s' $k_{p}k_{4}-mk_{T}$ now
 s' $k_{p}k_{4}-mk_{T}$ now
 s' k_{r} k_{r} now
 s' k_{r} k_{r} now
 s' k_{r} now
 k_{r} k_{r} now
 k_{r} $k_{r} > 0$ $mov_{r}, k_{r} > 0$
 $k_{r} > 0$ $k_{r} > 0$

