Connections TF and State space
State space:
$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$
 $-3 \quad sX(s) = AX + BU$ $X = (SI - A)BU$
 $Y = CX + DU$ $Y = [C(SI - A)B + D]u$

$$TF: \xrightarrow{u(s)} G(s) \xrightarrow{Y(s)} G(s) = \int C(sI - A) B + D$$

TE to state space:
- multiple state space models
- transfer function determines the minimum # of states
in the state space, but could be more states
would a state space with the
minimum number of states -> minimal
realization

$$G(s) = \frac{\beta_{n-1}s + \cdots + \beta_i s + \beta_o}{s^2 + \alpha_{n-1}s^{n-1} + \cdots + \alpha_i s + \alpha_o}$$

 $\dot{x} = Ax + Bu$
 $y = Cx + Du$

where

$$A = \begin{bmatrix} 0 \pm & 0 \\ 0 & - & + \\ -x_0 - x_1 - & - & -x_{t-1} \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad Pealization \\Pealization \\Pealiza$$

for proper (not strictly proper) TF:

$$G(s) = \frac{B_{n}s^{2} + \cdots + B_{i}s + B_{0}}{s^{2} + \alpha_{n-1}s^{n-1} + \cdots + \alpha_{i}s + \alpha_{0}}$$
Minimal Realization:
 $\dot{\chi} = Ax + Bu$
 $y = Cx + Du$

where

$$A = \begin{bmatrix} 0 \pm & 0 \\ \vdots & \vdots \\ 0 & 0 \pm \\ -\alpha_0 - \alpha_1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} B_0 - \alpha_0 B_n, B_1 - \alpha_1 B_{n_1} - \dots & B_{n-1} - \alpha_{n+1} B_n \end{bmatrix} \qquad D = B_n$$

$$C \text{ here is the previous } C + det(st - A)D$$

Laplace $Y(s) = C^{TS} U(s)$ transform $Y(s) = C^{TS} U(s)$ $|e^{-Tiw}| = I$ time delay doesn't change the magnitude $Le^{-Tiw} = -Tw$ shifts the phase of the signal by -Tw

Before:
$$\rightarrow \bigcirc \boxed{(cs)} \rightarrow \boxed{e^{-cs}} \rightarrow \boxed{Go}$$

open loop
TF
$$L(s) = e^{Ts}(Cs)G(s)$$

chur $1+L(s) = 0 \implies 1 + e^{-Ts}(s)G(s) = 0$
EX. PD control of a car
 $C(s) = kp + kds$ $G(s) = \frac{1}{ms^2}$
 $1+L(s) = 1 + e^{-Ts}\left(\frac{kp + kds}{ms^2}\right) = 0$
 $ms^2 + e^{-Ts}\left(kp + kds\right) = 0$
 $infinite degree polynomial$
 $e^{-Ts} = 1 - Ts + \frac{(-Ts)^2}{2} + \frac{(-Ts)^3}{3!} + \cdots$ Expansion
 $of e^{-Ts}$
 $ms^2 + e^{-Ts}\left(kp + kds\right) = 0$
 $ms^2 + e^{-Ts}\left(kp + kds\right) = 0$

$$G(s) = \frac{(s-z_1) - \cdots (s-z_q)}{(s-p_1) \cdots (s-p_n)}$$

$$G(s) = ?$$

$$F_{1} = \frac{s - 2i}{2i} = \frac{s - 2i}$$

TT |s-Pk'|

$$G(s) = \frac{1}{s - P_1}$$

Cauchy Argument Principle:
Sor a complex rational function G(G)
Zeros = # Cw
inside a encirclements + # of poles
inside a encirclements inside a contour
Zeros - # of poles = # Cw
inside a inside a of origin
Nyquist Contour -> encloses the RHP

$$I+L(S)$$

For stability:
interested in zeros $1+L(S) = O$
 $L(S) = C(G)G(S)$ count encirclements
of the origin

- know
#RHP zeros = # CW
encirclements + #RHP poles
encirclements + #RHP poles
of -I
HP poles of
L(S)
in RHP
in RHP
in RHP
in RHP
in be O
Want
- # CW
encirclements
of -I
CCW
encirclements = # RHP poles
of L(S)
in Char

$$denset
Char
 $denset$
 $denset
 $denset$
 $denset
 $denset$
 $denset
 $denset$
 $denset$
 $denset
 $denset$
 $den$$$$$$$

L(5) + I