## Hungarian (Munkres) Algorithm - Convex Relaxation

## N workers

**Optimal Assignment** 

N tasks



Optimal matching

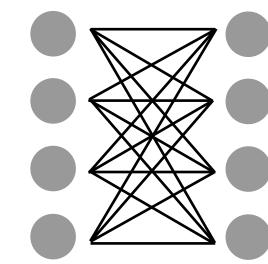
Overall Cost: Sum of costs for each assigned worker  $\operatorname{Tr}(C^T P)$ do you see why?

for some permutation matrix:  $P \in \mathcal{P}$ not a convex set do you see why?

A permutation matrix is an identity matrix with the columns (or rows) shuffled... ex.  $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ 

One task per worker **Cost matrix** 

**Bipartite Matching Perspective** N workers N tasks



...Costs are edge weights

If a worker can't perform a task... either remove the edge... or make the cost infty

Doubly stochastic matrices: rows and columns sum to 1  $\mathcal{X}$  is convex Convex Relaxation:  $\mathcal{P}$ 



Birkhoff-von Neummann Theorem: "the convex hull of permutation matrices is doubly stochastic matrices do you see why?

Doubly stochastic matrices:  $X \in \mathcal{X}$  satisfies  $X\mathbf{1} = \mathbf{1}$   $X^T\mathbf{1} = \mathbf{1}$  X > 0

## Convex $\operatorname{Tr}(C^TX)$ $\min_X$ Relaxation $X1 = 1 \ X > 0$ $X^T \mathbf{1} = \mathbf{1}$

Dual  $v^T \mathbf{1} + w^T \mathbf{1}$ max v, w, UProgram s.t.  $C^T = \mathbf{1}v^T + w\mathbf{1}^T + U^T$ U > 0

Note: this convex relaxation works cause linear programs are always optimized at the vertices

do you see why?

## **Dual Variable Interpretation**

 $v_i$ : row potential - lower bound on cost of performing task i

 $w_i$ : column potential - lower bound on cost incurred by worker j

 $U_{ij}$ : Inefficiency of worker jperforming task i