EE578B - Convex Optimization - Fall 2021

Homework 2

Due Date: Sunday, Jan $24^{\text {th }}$, 2021 at 11:59 pm

1. Matrix Rank

The column rank of a matrix is the number of linearly independent columns. The row rank of a matrix is the number of linearly independent row.
(a) (PTS: 0-2) Show that the row rank is less than or equal to the column rank.
(b) (PTS: 0-2) Show that the col rank is less than or equal to the row rank.

2. Grammian Rank

(PTS: 0-2) Show that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A A^{T}\right)$
3. Basis for Domain from Nullspace of A and Range of A^{T}

Consider $A \in \mathbb{R}^{m \times n}$ with $m<n$ and full row rank and a matrix $N \in \mathbb{R}^{n \times n-m}$ with full column rank whose columns span the nullspace of A. Suppose we write a vector $x \in \mathbb{R}^{n}$ as a linear combination of the rows of A and the columns of N, ie.

$$
x=\left[\begin{array}{ll}
A^{T} & N
\end{array}\right]\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right] .
$$

for $x_{1}^{\prime} \in \mathbb{R}^{m}$ and $x_{2}^{\prime} \in \mathbb{R}^{n-m}$
(a) (PTS: 0-2) Symbollically compute $\left[\begin{array}{ll}A^{T} & N\end{array}\right]^{-1}$.

Hint: Start by checking if $\left[\begin{array}{ll}A^{T} & N\end{array}\right]^{-1}=\left[\begin{array}{ll}A^{T} & N\end{array}\right]^{T} \ldots$
(b) (PTS: 0-2) Solve for x_{1}^{\prime} and x_{2}^{\prime} given A, N, and x.

4. Range and Nullspace

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ represent the range and nullspace of A (and similarly let $\mathcal{R}\left(A^{T}\right)$ and $\mathcal{N}\left(A^{T}\right)$ be the range and nullspace of A^{T}).
(a) (PTS: 0-2) Suppose $y \in \mathcal{R}(A)$ and $x \in \mathcal{N}\left(A^{T}\right)$. Show that $x \perp y$, ie. $x^{T} y=0$.
(b) (PTS: 0-2) Consider $A \in \mathbb{R}^{5 \times 10}$. Suppose A has only 3 linearly independent columns (the other 7 are linearly dependent on the first 3). What is the dimension of $\mathcal{R}(A)$? What is the dimension of $\mathcal{N}\left(A^{T}\right)$ What is the dimension of $\mathcal{N}(A)$? What is the dimension of $\mathcal{R}\left(A^{T}\right)$? (You can state your answers without proof.)

5. Fundamental Theorem of Linear Algebra Pictures

For each of the following matrices draw a picture of the domain (either \mathbb{R}^{2} or \mathbb{R}^{3}) labeling $\mathcal{R}\left(A^{T}\right)$ and $\mathcal{N}(A)$ and a picture of the co-domain (either \mathbb{R}^{2} or \mathbb{R}^{3}) labeling the $\mathcal{R}(A)$ and $\mathcal{N}\left(A^{T}\right)$.

$$
\begin{array}{ll}
\text { (PTS: 0-2) } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] & \text { (PTS: 0-2) } A=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] \\
\text { (PTS: 0-2) } A=\left[\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
2 & 2
\end{array}\right. & \text { (PTS: 0-2) } A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & -1
\end{array}\right]
\end{array}
$$

6. Representations of Affine Sets

Consider two representations of the same affine set.

$$
\begin{array}{ll}
\text { Representation 1: } & \mathcal{X}=\left\{x \in \mathbb{R}^{n} \mid A x=b,\right\} \\
\text { Representation 2: } & \mathcal{X}=\left\{x \in \mathbb{R}^{n} \mid x=N z+d, z \in \mathbb{R}^{n-m}\right\}
\end{array}
$$

where

- $A \in \mathbb{R}^{m \times n}$ is fat $(m<n)$ and full row $\operatorname{rank}(\operatorname{rk}(A)=m)$ and $b \in \mathbb{R}^{m}$
- $N \in \mathbb{R}^{n \times(n-m)}$ is tall, $\mathcal{R}(N)=\mathcal{N}(A)$, and $d \in \mathbb{R}^{n}$
(a) For each $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, compute $N \in \mathbb{R}^{n \times(n-m)}$ and $d \in \mathbb{R}^{n}$.

Note: There are many possible N 's and d 's that work.
(PTS: 0-2) $\quad A=\left[\begin{array}{lll}1 & -2 & 0\end{array}\right], \quad b=1$,
(PTS: 0-2) $\quad A=\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 1\end{array}\right], \quad b=\left[\begin{array}{l}1 \\ 1\end{array}\right]$,
(PTS: 0-2) $\quad A=\left[\begin{array}{ccccc}1 & -2 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 & 1\end{array}\right], \quad b=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
(b) For each $N \in \mathbb{R}^{n \times(n-m)}$ and $d \in \mathbb{R}^{n}$, compute $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.

Note 1: There are many possible A 's and b 's that work.
Note 2: Note that $N^{T} A^{T}=0$, ie. the rows of A should form a basis for the nullspace of N^{T}.
(PTS: 0-2) $\quad N=\left[\begin{array}{c}1 \\ -2 \\ -2\end{array}\right], \quad d=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(PTS: 0-2) $\quad N=\left[\begin{array}{cc}1 & 0 \\ -2 & 0 \\ 1 & 1\end{array}\right], \quad d=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
(PTS: 0-2) $\quad N=\left[\begin{array}{cc}1 & -2 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \quad d=\left[\begin{array}{c}-1 \\ 1 \\ 2 \\ 0 \\ 1\end{array}\right]$

7. Equivalent representations of spaces

- (PTS: 0-2) For $A \in \mathbb{R}^{m \times n}$ and $U \in \mathbb{R}^{m \times m}$, invertible, show that $\mathcal{N}(A)=\mathcal{N}(U A)$. OPTIONAL: Comment on how the rows of A relate to the rows of $U A$.
- (PTS: 0-2) For $A \in \mathbb{R}^{m \times n}$ and $V \in \mathbb{R}^{n \times n}$, invertible, show that $\mathcal{R}(A)=\mathcal{R}(A V)$. OPTIONAL: Comment on how the columns of A relate to the columns of $A V$.

8. Vector Derivatives

Let $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$. Compute $\frac{\partial f}{\partial x}$ for the following functions:

- (PTS: 0-2)

$$
f(x)=x_{1}^{4}+3 x_{1} x_{2}^{2}+e^{x_{2}}+\frac{1}{x_{1} x_{2}}
$$

- (PTS: 0-2)

$$
f(x)=\left[\begin{array}{c}
\beta x_{1}+\alpha x_{2} \\
\beta\left(x_{1}+x_{2}\right) \\
\alpha^{2} x_{1}+\beta x_{2} \\
\beta x_{1}+\frac{1}{\alpha} x_{2}
\end{array}\right]
$$

for $\alpha, \beta \in \mathbb{R}$

- (PTS: 0-2)

$$
f(x)=\left[\begin{array}{c}
e^{x^{T}} Q x \\
\left(x^{T} Q x\right)^{-1}
\end{array}\right]
$$

for some $Q=Q^{T} \in \mathbb{R}^{2 \times 2}$.

