EE578B - Convex Optimization - Fall 2021

Homework 2

Due Date: Sunday, Jan 24^{th} , 2021 at 11:59 pm

1. Matrix Rank

The column rank of a matrix is the number of linearly independent columns. The row rank of a matrix is the number of linearly independent row.

- (a) (PTS: 0-2) Show that the row rank is less than or equal to the column rank.
- (b) (PTS: 0-2) Show that the col rank is less than or equal to the row rank.

2. Grammian Rank

(PTS: 0-2) Show that $rank(A) = rank(A^T) = rank(A^T A) = rank(AA^T)$

3. Basis for Domain from Nullspace of A and Range of A^T

Consider $A \in \mathbb{R}^{m \times n}$ with m < n and full row rank and a matrix $N \in \mathbb{R}^{n \times n-m}$ with full column rank whose columns span the nullspace of A. Suppose we write a vector $x \in \mathbb{R}^n$ as a linear combination of the rows of A and the columns of N, ie.

$$x = \begin{bmatrix} A^T & N \end{bmatrix} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}.$$

for $x'_1 \in \mathbb{R}^m$ and $x'_2 \in \mathbb{R}^{n-m}$

- (a) **(PTS: 0-2)** Symbollically compute $\begin{bmatrix} A^T & N \end{bmatrix}^{-1}$. Hint: Start by checking if $\begin{bmatrix} A^T & N \end{bmatrix}^{-1} = \begin{bmatrix} A^T & N \end{bmatrix}^T$...
- (b) (PTS: 0-2) Solve for x'_1 and x'_2 given A, N, and x.

4. Range and Nullspace

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ represent the range and nullspace of A (and similarly let $\mathcal{R}(A^T)$ and $\mathcal{N}(A^T)$ be the range and nullspace of A^T).

- (a) (PTS: 0-2) Suppose $y \in \mathcal{R}(A)$ and $x \in \mathcal{N}(A^T)$. Show that $x \perp y$, i.e. $x^T y = 0$.
- (b) (PTS: 0-2) Consider $A \in \mathbb{R}^{5 \times 10}$. Suppose A has only 3 linearly independent columns (the other 7 are linearly dependent on the first 3). What is the dimension of $\mathcal{R}(A)$? What is the dimension of $\mathcal{N}(A^T)$ What is the dimension of $\mathcal{N}(A)$? What is the dimension of $\mathcal{R}(A^T)$? (You can state your answers without proof.)

5. Fundamental Theorem of Linear Algebra Pictures

For each of the following matrices draw a picture of the domain (either \mathbb{R}^2 or \mathbb{R}^3) labeling $\mathcal{R}(A^T)$ and $\mathcal{N}(A)$ and a picture of the co-domain (either \mathbb{R}^2 or \mathbb{R}^3) labeling the $\mathcal{R}(A)$ and $\mathcal{N}(A^T)$.

(PTS: 0-2)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 (PTS: 0-2) $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$
(PTS: 0-2) $A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ (PTS: 0-2) $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$

6. Representations of Affine Sets

Consider two representations of the same affine set.

Representation 1:
$$\mathcal{X} = \{x \in \mathbb{R}^n \mid Ax = b, \}$$
Representation 2: $\mathcal{X} = \{x \in \mathbb{R}^n \mid x = Nz + d, \ z \in \mathbb{R}^{n-m}\}$

where

- $A \in \mathbb{R}^{m \times n}$ is fat (m < n) and full row rank $(\operatorname{rk}(A) = m)$ and $b \in \mathbb{R}^m$
- $N \in \mathbb{R}^{n \times (n-m)}$ is tall, $\mathcal{R}(N) = \mathcal{N}(A)$, and $d \in \mathbb{R}^n$
- (a) For each $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, compute $N \in \mathbb{R}^{n \times (n-m)}$ and $d \in \mathbb{R}^n$. Note: There are many possible N's and d's that work.

(PTS: 0-2)
$$A = \begin{bmatrix} 1 & -2 & 0 \end{bmatrix}, b = 1,$$

(PTS: 0-2) $A = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$
(PTS: 0-2) $A = \begin{bmatrix} 1 & -2 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 & 1 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

(b) For each $N \in \mathbb{R}^{n \times (n-m)}$ and $d \in \mathbb{R}^n$, compute $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Note 1: There are many possible A's and b's that work. Note 2: Note that $N^T A^T = 0$, i.e. the rows of A should form a basis for the nullspace of N^T .

$$(\mathbf{PTS: 0-2}) \qquad N = \begin{bmatrix} 1\\ -2\\ -2 \end{bmatrix}, \quad d = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}$$
$$(\mathbf{PTS: 0-2}) \qquad N = \begin{bmatrix} 1 & 0\\ -2 & 0\\ 1 & 1 \end{bmatrix}, \quad d = \begin{bmatrix} 1\\ -1\\ 1\\ 1 \end{bmatrix}$$
$$(\mathbf{PTS: 0-2}) \qquad N = \begin{bmatrix} 1 & -2\\ 0 & 1\\ 1 & 0\\ 0 & 1\\ 1 & 1 \end{bmatrix}, \quad d = \begin{bmatrix} -1\\ 1\\ 2\\ 0\\ 1 \end{bmatrix}$$

7. Equivalent representations of spaces

- (PTS: 0-2) For $A \in \mathbb{R}^{m \times n}$ and $U \in \mathbb{R}^{m \times m}$, invertible, show that $\mathcal{N}(A) = \mathcal{N}(UA)$. OPTIONAL: Comment on how the rows of A relate to the rows of UA.
- (PTS: 0-2) For $A \in \mathbb{R}^{m \times n}$ and $V \in \mathbb{R}^{n \times n}$, invertible, show that $\mathcal{R}(A) = \mathcal{R}(AV)$. OPTIONAL: Comment on how the columns of A relate to the columns of AV.
- 8. Vector Derivatives

Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$. Compute $\frac{\partial f}{\partial x}$ for the following functions:

• (PTS: 0-2)

$$f(x) = x_1^4 + 3x_1x_2^2 + e^{x_2} + \frac{1}{x_1x_2}$$

• (PTS: 0-2)

$$f(x) = \begin{bmatrix} \beta x_1 + \alpha x_2 \\ \beta (x_1 + x_2) \\ \alpha^2 x_1 + \beta x_2 \\ \beta x_1 + \frac{1}{\alpha} x_2 \end{bmatrix}$$

for $\alpha, \beta \in \mathbb{R}$

• (PTS: 0-2)

$$f(x) = \begin{bmatrix} e^{x^T Q x} \\ (x^T Q x)^{-1} \end{bmatrix}$$

for some $Q = Q^T \in \mathbb{R}^{2 \times 2}$.