EE578B - Convex Optimization - Winter 2021

Homework 3

Due Date: Sunday, Jan $31^{\text {st }}$, 2020 at 11:59 pm

1. Quadratic Functions

Consider the quadratic function

$$
f(x)=\frac{1}{2} x^{T} Q x+c^{T} x
$$

- (PTS:0-2)Rewrite $f(x)$ in the form

$$
f(x)=\frac{1}{2}\left(x-x_{c}\right)^{T} Q\left(x-x_{c}\right)+\mathrm{CONST}
$$

- (PTS:0-2) Compute the derivative of both forms of $f(x)$ and show that they are the same.

2. Minimum Norm Problem

Consider the following optimization problem for finding the minimum norm solution to a linear system of equations

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x)=\frac{1}{2}|x|_{2}^{2}=\frac{1}{2} x^{T} x \\
\text { s.t. } & A x=b
\end{array}
$$

for $A \in \mathbb{R}^{m \times n}$ full row rank with $m<n$ and $b \in \mathbb{R}^{m}$. The optimality conditions for this optimization problem are given by

$$
\begin{align*}
\frac{\partial f^{T}}{\partial x}=x & =-A^{T} v \tag{1}\\
A x & =b \tag{2}
\end{align*}
$$

with dual variable $v \in \mathbb{R}^{m}$. Let x^{*}, v^{*} refer to x and v at optimum.

- (PTS:0-2) Solve for v^{*} in terms of b. (Hint: start by left multiplying (1) by A and substituting in $A x=b$).
- (PTS:0-2) Solve for x^{*} in terms of b.
- (PTS:0-2) Let the columns of $N \in \mathbb{R}^{n \times(n-m)}$ form a basis for the nullspace of A. Compute $z_{1}^{*} \in \mathbb{R}^{m}$ and $z_{2}^{*} \in \mathbb{R}^{n-m}$ such that

$$
x^{*}=\underbrace{\left[\begin{array}{ll}
A^{T} & N
\end{array}\right]}_{P}\left[\begin{array}{l}
z_{1}^{*} \\
z_{2}^{*}
\end{array}\right]
$$

ie. write x^{*} in terms of the coordinates with respect to the columns of P. Interpret z_{1}^{*} and z_{2}^{*} in terms of projections of x^{*} onto $\mathcal{R}\left(A^{T}\right)$ and $\mathcal{R}(N)$. How does z_{1}^{*} relate to v^{*} ? Explain the value of z_{2}^{*} intuitively.

- (PTS:0-2) Consider the above problem for $A=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $b=1$. Draw a picture of the optimization space labeling

$$
\left\{x \in \mathbb{R}^{2} \mid A x=b\right\}, \quad \mathcal{R}\left(A^{T}\right), \quad x^{*}, \quad-A^{T} v^{*}, \quad \text { level sets of } f(x),\left.\quad \frac{\partial f}{\partial x}\right|_{x^{*}}
$$

3. Spherical Level Sets

Now consider the optimization problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x)=\frac{1}{2}|x|_{2}^{2}+c^{T} x=\frac{1}{2} x^{T} x+c^{T} x \\
\text { s.t. } & A x=b
\end{array}
$$

for $A \in \mathbb{R}^{m \times n}$ full row rank with $m<n$ and $b \in \mathbb{R}^{m}$. The optimality conditions are given by

$$
\begin{align*}
{\frac{\partial f}{}{ }^{T}}^{2}=x+c & =-A^{T} v \tag{3}\\
A x & =b \tag{4}
\end{align*}
$$

with dual variable $v \in \mathbb{R}^{m}$. Let x^{*}, v^{*} refer to x and v at optimum.

- (PTS:0-2) Solve for v^{*} in terms of b. (Hint: start by left multiplying (3) by A and substituting in $A x=b$). Using the solution for v^{*} solve for x^{*}.
- (PTS:0-2) Write the objective function in the form from Problem 1.

$$
\frac{1}{2} x^{T} x+c^{T} x=\frac{1}{2} z^{T} z+\mathrm{CONST}
$$

for $z=x-\bar{x}$ for some $\bar{x} \in \mathbb{R}^{n}$. Rewrite the constraint in terms of z, ie. compute \bar{b} such that

$$
A x=b \quad \Rightarrow \quad A z=\bar{b}
$$

- (PTS:0-2) Show that

$$
z^{*}=x^{*}-\bar{x}=A^{T}\left(A A^{T}\right)^{-1} \bar{b}
$$

- (PTS:0-2) Consider the above problem for $A=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $b=1$ and $c^{T}=\left[\begin{array}{ll}-1 & 1\end{array}\right]$ Draw a picture of the optimization space labeling

$$
\left\{x \in \mathbb{R}^{2} \mid A x=b\right\}, \quad \mathcal{R}\left(A^{T}\right), \quad \text { level sets of } f(x), \quad \bar{x}
$$

- (PTS:0-2) Also label

$$
x^{*}, \quad z^{*}=x^{*}-\bar{x}, \quad-A^{T} v^{*},\left.\quad \frac{\partial f}{\partial x}\right|_{x^{*}},
$$

and interpret the location of x^{*} relative to \bar{x}

4. Ellipsoidal Level Sets

Now consider the optimization problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x)=\frac{1}{2} x^{T} Q x+c^{T} x \\
\text { s.t. } & A x=b
\end{array}
$$

for $A \in \mathbb{R}^{m \times n}$ full row rank with $m<n$ and $b \in \mathbb{R}^{m}$. The optimality conditions are given by

$$
\begin{align*}
\frac{\partial f^{T}}{\partial x}=Q x+c & =-A^{T} v \tag{5}\\
A x & =b \tag{6}
\end{align*}
$$

with dual variable $v \in \mathbb{R}^{m}$. Let x^{*}, v^{*} refer to x and v at optimum.

- (PTS:0-2) Solve for v^{*} in terms of b. (Hint: start by left multiplying (5) by $A Q^{-1}$ and substituting in $A x=b)$. Using the solution for v^{*} solve for x^{*}.
- (PTS:0-2) Rewrite the optimization problem using the coordinate transformation $x=$ $Q^{-\frac{1}{2}} x^{\prime}$ (equivalently $x^{\prime}=Q^{\frac{1}{2}} x$).
- (PTS:0-2) Re-solve the optimization problem using the form from Problem 3 in the x^{\prime} coordinates and show that you get the same solution as your solution above in the x coordinates.
- (PTS:0-2) Consider the above problem for

$$
Q=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], \quad A=\left[\begin{array}{ll}
1 & 1
\end{array}\right], \quad b=1, \quad c^{T}=\left[\begin{array}{ll}
-1 & 1
\end{array}\right]
$$

Compute the center of the ellipsoidal level sets \bar{x}.

- (PTS:0-2) Draw a picture of the optimization space labeling

$$
\left\{x \in \mathbb{R}^{2} \mid A x=b\right\}, \quad \mathcal{R}\left(A^{T}\right), \quad \bar{x}, \quad \text { level sets of } f(x), \quad x^{*}, \quad-A^{T} v^{*},\left.\quad \frac{\partial f}{\partial x}\right|_{x^{*}}
$$

