EE578B - Convex Optimization - Winter 2021

Homework 4

Due Date: Sunday, Feb $7^{\text {th }}, 2021$ at 11:59 pm

1. Constraint Reformulations

Consider the optimization problem

$$
\begin{array}{cl}
\min _{x} & f(x)=\frac{1}{2} x^{T} Q x+c^{T} x \\
\text { s.t. } & x \in \mathcal{X}
\end{array}
$$

where \mathcal{X} is expressed in two forms.

$$
\begin{array}{ll}
\text { Form 1: } & \mathcal{X}=\left\{x \in \mathbb{R}^{n} \mid A x=b\right\} \\
\text { Form 2: } & \mathcal{X}=\left\{x \in \mathbb{R}^{n} \mid x=N z+x^{0}, z \in \mathbb{R}^{n-m}\right\}
\end{array}
$$

for $A \in \mathbb{R}^{m \times n}$ full row rank, $b \in \mathbb{R}^{m}, N \in \mathbb{R}^{n-m}$ where the columns of N form a basis for $\mathcal{N}(A)$ and x^{0} satisfies $A x^{0}=b$.

- (PTS:0-2) Solve the optimization problem using the optimality conditions

$$
\frac{\partial f}{\partial x}=v^{T} A, \quad A x=b
$$

for Lagrange multiplier $v \in \mathbb{R}^{n}$. Solve for x and v.

- (PTS:0-2) Solve the optimization problem using the optimality conditions

$$
\left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial z}\right]=\tau^{T}[I-N], \quad x=N z+x^{0}
$$

for Lagrange multiplier $\tau \in \mathbb{R}^{n}$. Solve for x, z, and τ.

- (PTS:0-2) Use Form 2 to turn the optimization problem into an unconstrained optimization problem and solve for z.
- (PTS:0-2) Show that the answers for all three optimizaton problems are the same. How do x and z relate to each other? How do τ and v relate to each other?

2. Inequality constraint reformulations

Consider the affine equality and inequality constraints of the form

$$
A x=b, \quad C x \geq d
$$

where $x \in \mathbb{R}^{3}$ and

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right], \quad b=1 \\
& C=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & -1
\end{array}\right], \quad d=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

- (PTS: 0-2) Plot the set of x 's that satisfy these constraints.
- (PTS: 0-2) Represent the set $A x=b$ in the form $x=N z+x^{0}$ where the columns of N are a basis for the nullspace of A. Given N and $x^{0}, C x \geq d$ implies inequality constraints on z. Write down these constraints, ie. find E and h such that $E z \geq h$. If you chose a different N and/or x^{0} would these constraints be the same?
- (PTS: 0-2) Plot the set of z 's such that $E z \geq h$.

3. Inequality Constraints and Positive Matrices (EXTRA CREDIT) (PTS: 0-2)

The inequality constraint $C x \geq d$ for $C \in \mathbb{R}^{p \times n}$ and $d \in \mathbb{R}^{p}$ can be rewritten as

$$
C x \geq d \quad \Rightarrow \quad C x=d+s, \quad s \geq 0
$$

using a slack variable $s \in \mathbb{R}^{p}$. How does the constrained set change if $s \geq 0$ is replaced with the constraint $U s \geq 0$ for some matrix U with positive elements. Suggestion: experiment with an example where $C \in \mathbb{R}^{2 \times 2}$.

4. Complementary Slackness

For $x \in \mathbb{R}^{n}$ and $\mu \in \mathbb{R}^{n}$

- (PTS: 0-2) Show that

$$
\mu_{i} x_{i}=0, x_{i} \geq 0, \mu_{i} \geq 0, \quad \Longleftrightarrow \quad \mu_{i}=0 \quad \text { OR } \quad x_{i}=0
$$

- (PTS: 0-2) Show that if $x_{i} \geq 0$ and $\mu_{i} \geq 0$ for all i then

$$
\mu_{i} x_{i}=0, \forall i \quad \Longleftrightarrow \quad \mu^{T} x=0
$$

5. Lagrangians

Consider the optimization problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{2}} & f(x)=\frac{1}{2} x^{T} x \\
\text { s.t. } & A x=b
\end{array}
$$

where

$$
A=\left[\begin{array}{ccc}
- & \bar{A}_{1}^{T} & - \tag{1}\\
- & \bar{A}_{2}^{T} & -
\end{array}\right]=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
0.9 \\
0.9
\end{array}\right]
$$

- (PTS:0-2) Write the Lagrangian for the optimization problem $\mathcal{L}(x, v)$ with a dual variable $v \in \mathbb{R}^{2}$. (You can leave your answer in terms of A and b.)
- (PTS:0-2) Plot each of the following surfaces $h(x)$ in the $\left[x_{1} x_{2} h(x)\right]^{T}$ space. For the expressions that include v_{1} and v_{2}, hold v_{1} and v_{2} fixed for each plot.

$$
h(x)=f(x), \quad h(x)=v_{1}\left(\bar{A}_{1}^{T} x-b_{1}\right), \quad h(x)=v_{2}\left(\bar{A}_{2}^{T} x-b_{2}\right), \quad h(x)=\mathcal{L}(x, v)
$$

Now vary the values of v_{1} and v_{2} over the range $[-2,2]$. How does each surface change?

- (PTS:0-2) Now replace $A x=b$ with $A x \geq b$. Does the Lagrangian change? What new constraints do we have to impose on the dual variables v_{1} and v_{2} ? How does this affect how the surfaces

$$
h(x)=v_{1}\left(\bar{A}_{1}^{T} x-b_{1}\right), \quad h(x)=v_{2}\left(\bar{A}_{2}^{T} x-b_{2}\right), \quad h(x)=\mathcal{L}(x, v)
$$

change with v_{1} and v_{2} ?

