
EE578B - Convex Optimization - Winter 2021

Homework 7

Due Date: Wednesday, Mar 3rd, 2021 at 11:59 pm
Consider the Markov Decision Process with the following graph and action structure.
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with states S, edges E , and actions A. The actions are given in blue with the associated transition
probabilities labeled (when not obvious).

1. Transition Kernel Constraints

• (PTS:0-2) Write down the incidence matrices for the graph.

Ei ∈ R|S|×|E|, Eo ∈ R|S|×|E|, P ∈ R|S|×|A|, A ∈ R|S|×|A|, W ∈ R|E|×|A|

• (PTS:0-2) For the incidence matrices given above show the following identities

1TEi = 1TEo = 1T

1TA = 1TP =

1TW = 1T

EiW = P, EoW = A

where the dimension of each 1 is determined by context.
• (PTS:0-2) Consider two policies with the following actions chosen from each state

Policy 1: State 1: Action 1, State 2: Action 2,
State 3: Action 4, State 4: Action 6

Policy 2: State 1: Action 1, State 2: Action 2,

State 3: 50% Action 3
50% Action 4

, State 4: 50% Action 5
50% Action 6

Write each policy in matrix form Π ∈ R6×4. Compute the corresponding Markov matrix
M = PΠ. Also show that AΠ = I for each policy.



• (PTS:0-4) The stationary (state) distribution associated with each Markov chain is the
solution to the equation ρ = Mρ. Compute this stationary distribution by finding the
eigenvector with eigenvalue 1. (You can use the function eig in Matlab or numpy.linalg.eig
in Python.). Make sure to scale the eigenvector so that it is an appropriate probability
distribution that sums to 1 and has all positive values. Compute the corresponding action
distribution y as y = Πρ.

• (PTS:0-2) Show that each y from the previous part satisfies Py = Ay and 1T y = 1.
Compute the corresponding edge mass vector for each x = Wy. Show that x is in the
nullspace of E = Ei − Eo.

2. Infinite Horizon, Average Reward
Consider the following optimization problem for finding the optimal steady-state action distribu-
tion y ∈ R|A|

max
y

rT y (1)

s.t. Py = Ay, 1T y = 1, y ≥ 0

for reward vector r ∈ R|A|.

• (PTS:0-2) Write the dual optimization problem with dual variables λ ∈ R associated with
the constraint 1T y = 1, v ∈ R|S| associated with constraint Py = Ay, µ ∈ R|A|

+ associated
with the constraint y ≥ 0.

• (PTS:0-2) The KKT conditions at optimum (for either the primal or dual problem) are
given by

rT − λ1T + vT (P −A) + µT = 0, µ ≥ 0

Py −Ay = 0, 1T y = 1, y ≥ 0

µT y = 0

Use these conditions to show that λ is an upper bound on the primal objective rT y for any
feasible y. What does µT y represent for a specific y? What does the condition µT y = 0

imply about the optimal y?
• (PTS:0-4) Use cvx or cvxpy to solve the above optimization problem for the transition

kernel given initially and each reward vector

rT =
[
1 2 3 4 5 6

]
rT =

[
1 1 1 1 1 1

]
What is the optimal joint distribution y in each case? What is the expected average reward
rT y in each case?

• (PTS:0-2) What is the steady-state state distribution associated with each solution ρ = Ay?
What is the optimal policy associated with y? Use the formula

(πs)a =
ya
ρs

=
ya∑

a∈As
ya

You could also put the policy in matrix form using the formula

Π = diag(y)ATdiag(ρ)−1



• (PTS:0-2) Now suppose you apply the policy

Π =



1 0 0 0

0 1 0 0

0 0 0.2 0

0 0 0.8 0

0 0 0 0.2

0 0 0 0.8


What reward do you achieve in each case? (Hint: compute ρ such that ρ = PΠρ and then
y using y = Πρ.) How much does this reward differ from the optimal average reward? How
does this difference relate to the quantity µT y where µ is the optimal dual variable?

3. Finite Horizon, Total Reward
Consider the following optimization problem for finding the optimal finite horizon policy.

max
y(t), t∈T

T−1∑
t=0

r(t)T y(t) + gTAy(T ) (2)

s.t. Ay(0) = ρ(0), y(0) ≥ 0

Ay(t+ 1) = Py(t), y(t+ 1) ≥ 0, t ∈ T

where T = {0, . . . , T − 1}, ρ(0) ∈ R|S| is a given initial state distribution, and g ∈ R|S| is a final
cost on each of the states.

• (PTS:0-4) Write the dual optimization problem with dual variables v(0) ∈ R|S| associated
with the constraint Ay(0) = ρ(0), v(t+1) ∈ R|S| associated with constraint Py(t) = Ay(t+1),
and µ(t) ∈ R|A|

+ associated with the constraint y(t) ≥ 0.
• (PTS:0-4) The KKT optimality conditions for the primal and dual optimization problems

are given by

gTA− v(T )A+ µ(T )T = 0, µ(T ) ≥ 0

r(t)T + v(t+ 1)TP − v(t)TA+ µ(t)T = 0, µ(t) ≥ 0, t ∈ T
Ay(0) = ρ(0), y(0) ≥ 0

Ay(t+ 1) = Py(t), y(t+ 1) ≥ 0, t ∈ T
µ(t)T y(t) = 0, t ∈ T , t = T

Use these conditions to show that v(0)Tρ(0) is an upper bound on the primal objective∑
t r(t)

T y(t) + gTAy(T ) for any feasible y(t) that satisfies the mass flow equations. What
does

∑
t µ(t)

T y(t) represent for a specific mass flow y(t), t ∈ T .
• (PTS:0-4) Use cvx or cvxpy to solve the above optimization problem for the MDP given

initially with the following rewards

r(t)T =
[
2 1 2 1 2 1

]
for t ∈ T , gT =

[
1 1 1 1

]
for ten time steps T = 10 and initial distribution ρ(0) =

[
0.25 0.25 0.25 0.25

]T
What is the optimal action distribution y(t) at each time step? What is the expected total
reward

∑
t r(t)

T y(t)?



• (PTS:0-4) What is the policy Π(t) chosen at each time step? Use the formula

(πs)a(t) =
ya(t)
ρs(t)

= ya(t∑
a∈As

ya(t)

where ρ(t) = Ay(t).
• (PTS:0-4) Now suppose you apply the policy

Π(t) =



1 0 0 0

0 1 0 0

0 0 0.2 0

0 0 0.8 0

0 0 0 0.2

0 0 0 0.8


at each time step. Start by computing y(0) = Π(0)ρ(0). ρ(t) is then given by Py(0) = ρ(1).
Use ρ(1) to compute y(1) = Π(1)ρ(1), etc. What total reward do you achieve? What is the
quantity

∑
t µ(t)

T y(t)? How does this relate the total reward to the optimal total reward?


