EE578B - Convex Optimization - Winter 2021

Homework 8

Due Date: Sunday, Mar $14^{\text {th }}$, 2021 at 11:59 pm

1. Newton's Method

Consider the following unconstrained quadratic program.

$$
\min _{x} \quad f(x)=\frac{1}{2} x^{T} Q x+c^{T} x
$$

for $x \in \mathbb{R}^{2}$

$$
Q=\left[\begin{array}{cc}
101 & -99 \\
-99 & 101
\end{array}\right], \quad c=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

Note that the level sets look something like

- (PTS:0-2) Perform regular first order gradient descent using the update equation

$$
x^{+}=x-\gamma \frac{\partial f^{T}}{\partial x}
$$

starting from the initial condition $x=\left[\begin{array}{ll}10 & 0\end{array}\right]^{T}$ with a fixed step size γ. (Pick the step size.) Note: if you want you can use a more sophisticated step-size method.

- (PTS:0-2) Plot the trajectory of x and describe the behavior intuitively.
- (PTS:0-2) Perform Newton's Method starting from the same initial condition with the same step size.

$$
x^{+}=x-\gamma\left(\frac{\partial^{2} f}{\partial x^{2}}\right)^{-1} \frac{\partial f}{\partial x} T
$$

- (PTS:0-2) Plot the trajectory of x and compare the qualitative performance to the firstorder gradient descent method.

Now consider the following constrained convex program

$$
\begin{array}{cl}
\min _{x} & 10 x_{1}^{4}+2 x_{2}^{4}+2 x_{3}^{4}+2 x_{4}^{4} \\
\text { s.t. } & A x=b
\end{array}
$$

for $x \in \mathbb{R}^{4}$ and

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- (PTS:0-2) Use Newton's method to perform gradient descent on this constrained optimization problem to solve for the optimal $x \in \mathbb{R}^{n}$ and the optimal dual variable $v \in \mathbb{R}^{2}$
- (PTS:0-2) Compare $\frac{\partial f}{\partial x}$ and $v^{T} A$ at optimum. How do they relate?

2. Interior Point Method

Consider the constrained optimization problem

$$
\begin{array}{cl}
\min _{x} & f(x)=10 x_{1}^{4}+x_{2}^{4} \\
\text { s.t. } & h(x) \leq 0
\end{array}
$$

for $x \in \mathbb{R}^{2}$

$$
h(x)=\left[\begin{array}{l}
(x-\mathbf{1})^{T} Q_{1}(x-\mathbf{1})-1 \\
(x-\mathbf{1})^{T} Q_{2}(x-\mathbf{1})-1
\end{array}\right]
$$

where $\mathbf{1}^{T}=\left[\begin{array}{ll}1 & 1\end{array}\right]$

$$
Q_{1}=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right], \quad Q_{2}=\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]
$$

The constraint level sets and objective level sets are shown in the following figure.

- (PTS:0-2) Replace the objective function $f(x)$ with $t f(x)$ for some $t>0$. Replace the inequality constraints with equality constraints of the form $h_{i}(x)=s_{i}$ and add barrier function terms of the form $\mu \ln \left(s_{i}\right)$ to the objective for some $\mu>1$.
- (PTS:0-2) Write the Lagrangian for this new optimization problem (with barrier functions) with dual variables $v \in \mathbb{R}^{2}$ for the equality constraints.
- (PTS:0-4) Write code to perform Newton's method for gradient descent to solve for the optimal $x \in \mathbb{R}^{2}, s \in \mathbb{R}^{2}$, and $v \in \mathbb{R}^{2}$ for a given value of t.
- (PTS:0-4) For each value of t, run Newton's method till $\left|x-x^{+}\right|<\delta$ for some tolerance $\delta>0$. After x converges, update t as $t^{+}=\mu t$ and repeat solving for x. (Note, it's important that $\mu>1$ so that t will grow, ie. the objective gets more weight as you approach the boundary.) Iterate on this process till the optimal x is found. How does this method perform for different values of μ ?

3. Simplex Method - Row Geometry

Consider the following linear program for $z \in \mathbb{R}^{3}$

$$
\begin{array}{cl}
\max _{x} & c^{T} z \\
\text { s.t. } & C z \leq d, x \geq 0
\end{array}
$$

where

$$
c=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], \quad d=\left[\begin{array}{l}
2 \\
2 \\
2 \\
3 \\
3 \\
3
\end{array}\right]
$$

Note that this set is the inside of the following geometric shape (with the vertices numbered).

- (PTS:0-2) Use a slack variable $s \in \mathbb{R}^{6}$ to rewrite the LP in standard form for the simplex method

$$
\begin{array}{cl}
\max _{x} & r^{T} x \\
\text { s.t. } & A x=b, x \geq 0
\end{array}
$$

What is x ? A ? b ? What feasible x corresponds to $z=0$?

- (PTS:0-2) Write a tableau for the linear program in the form

$$
\left[\begin{array}{ccc}
1 & -r^{T} & 0 \\
\mathbf{0} & A & b
\end{array}\right]
$$

- (PTS:0-4) Starting at the initial solution $z=0$ (vertex 0), perform pivot steps to find the optimal solution to the linear program. What is the optimal x ? What is the corresponding optimal z ? Which rows of the constraint $C z \leq d$ are satisfied with equality?
- (PTS:0-2) What route did you follow through the polytope? You can list the route referencing the vertex numbers.

4. Simplex Method - Column Geometry

Consider the following linear program for $x \in \mathbb{R}^{7}$

$$
\begin{aligned}
\max _{x} & r^{T} x \\
\text { s.t. } & A x=b, x \geq 0
\end{aligned}
$$

where

$$
A=\left[\begin{array}{lll}
A_{1} & \cdots & A_{7}
\end{array}\right]=\left[\begin{array}{ccccccc}
1 & 0 & 2 & 1 & 1 & -1 & -1 \\
0 & 1 & 1 & 2 & -1 & 1 & 2
\end{array}\right]
$$

- (PTS:0-2) Draw the columns of A as vectors in R^{2}.
- (PTS:0-2) Suppose $b=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. Find all possible pairs of basis vectors $\left(A_{i}\right.$ and $\left.A_{i^{\prime}}\right)$ such that $\left[\begin{array}{ll}A_{i} & A_{i^{\prime}}\end{array}\right]\left[\begin{array}{c}x_{i} \\ x_{i^{\prime}}\end{array}\right]=b$. for $x \geq 0$. (Hint: there are 4 pairs. Drawing b with the columns of A may help.)
- (PTS:0-2) Suppose $b=\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Find all possible pairs of basis vectors $\left(A_{i}\right.$ and $\left.A_{i^{\prime}}\right)$ such that $\left[\begin{array}{ll}A_{i} & A_{i^{\prime}}\end{array}\right]\left[\begin{array}{l}x_{i} \\ x_{i^{\prime}}\end{array}\right]=b$. for $x \geq 0$. (Hint: there are 7 pairs. Drawing b with the columns of A may help.)
- (PTS:0-4) Now consider the reward vector $r^{T}=\left[\begin{array}{llllll}-3 & -1 & -1 & 1 & -3 & 3\end{array}\right]$ for $b^{T}=\left[\begin{array}{ll}2 & 2\end{array}\right]^{T}$. Write the tableau for the linear program to maximize $r^{T} x$. Perform the pivot steps shown in the following illustrations.

What is the optimal x and $r^{T} x ?$

- (PTS:0-4) Now consider the reward vector $r^{T}=\left[\begin{array}{llllllll}-3 & 0 & 1 & 2 & 1 & -1 & 2\end{array}\right]$ for $b^{T}=\left[\begin{array}{lll}2 & 0\end{array}\right]^{T}$ Write the tableau for the linear program to maximize $r^{T} x$. Perform the pivot steps shown in the following illustrations.

Step 2:

What is the optimal x and $r^{T} x$?

- (PTS:0-2) Which individual x_{i} 's could correspond to the positive and negative part of a single unconstrained variable?

