AE 514 : Estimation Theang i KALMAN Filleting.
Chapter 1: Least Squares
(observers)
Ex: satellite: stor locations $\rightarrow$ position, velocity orientation, angular vel.
airplane: GPS, airspeed $\rightarrow$ position, vel. gyroscopes orient., angular vel
self driving.
car $\quad \begin{aligned} & \text { LIDAR } \\ & \text { speedometer }\end{aligned}$ position (lave position)
NoISE IN MEASUREMENTS $\begin{aligned} & t \\ & \text { estimate }\end{aligned}$ new meas $\longrightarrow$ updated estimate
Notation:
$x$ : true state (unknown)
$\tilde{x}$ : measured state (known) state
use to $\stackrel{\downarrow}{ }$ control (based on sequation principle)
$\hat{x}$ : estimated value (computed))
$\uparrow$
all vectors
$V$ : measurement noise (umknamn) stat id Noise in the sensor
$\omega$ : process noise (annam) stated noise in th dynamics
e: residual error
$e=\tilde{x}-\hat{x}\} \rightarrow \begin{aligned} & \text { how mule } \\ & \text { out estrimbe }\end{aligned}$ differs frown
(x) $-\hat{x}$ meas.

$$
\begin{aligned}
& \tilde{x}=x+v \\
& \tilde{x}=\hat{x}+e=\tilde{x}+\tilde{x}-\tilde{x}
\end{aligned}
$$

Greatest Mathematician

LEAST SQUARES: GAUSS (1820) f "Sew, but ripe."

Model: $y(t)=\sum_{i=r}^{n}{\underset{q}{\text { parameters }}}_{x_{i}} h_{i}(t)$

$$
\begin{aligned}
& \text { kneed how to } \\
& \text { do } \frac{\text { EFT }}{1960 \text { ' }}
\end{aligned}
$$

output parameters
$\left(\sum_{i=1}^{n} x_{i} a_{i t} \rightarrow\right.$ Sitting aline $h_{i}$ : basis function least squares is linear in $x_{i}^{\prime}$ ( $h_{i} \mid t$ ) might not be
m: measurements. linear
$n$ : parameters.
tall. $\longrightarrow$ find closest
$n$ parameles that $\xrightarrow{n}$ fit the output data
Mcastruets
ginen a state estimate:
compute what we would expect the
$y_{n}$ oufut to be …

$$
e=\tilde{y}-\hat{y}
$$

error in the
output.
essimute
of oulput
data state estimale

$$
\begin{gathered}
\begin{array}{c}
\hat{y}=H \hat{x}+\tilde{y}-\tilde{y} \\
\Rightarrow \tilde{y}=H \hat{x}+\tilde{y}-\hat{y} \\
\tilde{y}=H \hat{x}+e \\
\hat{1} \\
\text { meas. Pik } \hat{x} \text { +o minimize }
\end{array} \text {. }
\end{gathered}
$$

$$
e=\tilde{y}-H \hat{x}
$$

mininize dy

$$
\min \frac{1}{2}\|e\|_{2}^{2}
$$

e seffly $\frac{\partial J}{\partial \hat{x}}=0$

Vedor Deinatives
$f: \mathbb{R} \rightarrow \mathbb{R} . \quad \Delta f=\frac{\partial f}{\partial x} \Delta x$.




$$
\begin{aligned}
f(x)= & \sin \left(x^{\top} x\right)+\ln \left(c^{\top} x\right) \\
= & \sin \left(\Delta x^{\top} x\right)+\sin \left(x^{\top} \Delta x\right) \\
& +\ln \left(c^{\top} \Delta x\right)
\end{aligned}
$$

$c \in \mathbb{R}^{n}$

$$
\Delta f=l_{-} \mid \Delta x
$$

- $f(x)=A x \quad \frac{\partial f}{\partial x}=A \quad \Delta f=A \Delta x$
$f(x)=1 x^{\top} Q x<$ Portorbea $x$ product separately $\{$ product and transpon

$$
\Delta f=\frac{1}{2} \frac{\Delta x^{\top} Q x}{\text { scatas }}+\frac{1}{2} x^{\top} Q \Delta x=\frac{1}{2}\left(x^{\top} Q^{\top} \underline{\Delta x}+x^{\top} Q \Delta x\right)=\frac{1}{2} x^{\top}\left(Q^{\top}+Q\right) \Delta x
$$

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{\frac{1}{2} x^{\top}\left(Q^{\top}+Q\right)^{k}}{\text { - } f(x)=\sin \left(x^{\top} x\right)+\ln \left(c^{\top} x\right)}
\end{gathered}
$$

$A \in \mathbb{R}^{n \times n}$ not nee sym

$$
A=\frac{1}{2}\left(A+A^{\top}\right)+\frac{1}{2}\left(A-A^{\top}\right) \text { second }
$$

use chain me.

Taylor ExP of $f(x)$

$$
\Delta \frac{\partial f}{\partial x} \left\lvert\,=\frac{\Delta x}{T}\left[\frac{\left.\frac{1}{2}(Q+Q)^{\top}\right]}{\left(\partial^{3} f 1\right.}\right.\right.
$$

$\frac{\partial^{3} f}{\partial x^{3}}=\underbrace{\frac{\partial}{\partial x}\left|\frac{\partial^{2} f}{\partial x^{2}}\right|}_{\text {matrix }} \Delta x^{\top} \int_{\frac{\partial^{3} f}{\partial x^{3}}}^{\text {mix }}$ matrix cookbook

$$
\begin{aligned}
& \Delta f=\frac{\partial \sin }{\partial u} \frac{\partial u}{\partial x} \Delta x+\frac{\partial \ln }{\partial u^{\prime}} \frac{\partial u^{\prime}}{\partial x} \Delta x x^{\top} A x=\frac{1}{2} x^{\top}\left(A+A^{\top}\right) x+\frac{1}{2} x^{\top}\left(A+A^{\prime}\right)^{\text {spaced netinees }} \\
& \begin{array}{ll|l}
\frac{1}{2} x^{\top} A x-\frac{1}{2} x^{\top} A^{\top} x=0 & \alpha-h_{i j n d i m} \\
\hline & \frac{1}{i} \text { sym }
\end{array} \\
& =\cos \left(x^{\top} x\right)\left[\Delta x^{\top} x+x^{\top} \Delta x\right] \\
& \begin{array}{l}
x^{\top} K X=0 \\
\Lambda_{\text {skew sym }}
\end{array} \\
& =\cos \left(x^{\top} x\right)\left[2 x^{\top} \Delta x\right]+\frac{1}{c^{\top} x} c^{\top} \Delta x \\
& \frac{\partial f}{\partial x}=\left[2 \cos \left(x^{\top} x\right) x^{\top}+\frac{1}{c^{\top} x} c^{\top}\right] \\
& f(x)=x^{\top} Q x \quad \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(x^{\top}\left(Q+Q^{\top}\right) \frac{1}{2}\right) \\
& \Delta \frac{\partial f}{\partial x}=\Delta x^{\top}\left(\frac{Q+Q^{\top} \frac{1}{2}}{\frac{\partial^{2} f}{\partial x^{2}}} \quad \frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{2}\left(Q+Q^{\top}\right)\right.
\end{aligned}
$$

FROM ABOVE ... 3 denser

$$
\hat{y}=H \hat{x}+\tilde{y}-\tilde{y}
$$

$$
e=\tilde{y}-H \hat{x}
$$

$$
\min \frac{1}{2} \frac{\|e\|_{2}^{2}}{\downarrow}
$$

minimize dy
minimize magnitude of residual error.

$$
\Rightarrow \tilde{y}=H \hat{x}+\tilde{y}-\hat{y}
$$

$$
\begin{gathered}
\tilde{y}=H \hat{x}+e \\
\text { pick }
\end{gathered}
$$

$\hat{\uparrow}_{\text {meas. pick }}^{\hat{x}}$ to minimize

$$
\begin{aligned}
\min _{\hat{x}} J & =\frac{1}{2}(\tilde{y}-H \hat{x})^{\top}(\tilde{y}-H \hat{x}) \\
J & =\frac{1}{2}\left(\hat{y}^{\top} \tilde{y}-2 \hat{y}^{\top} H \hat{x}\right.
\end{aligned}
$$

$\frac{\partial J}{\partial \hat{x}}=0$

$$
\frac{\partial J}{\partial \hat{x}}=-2 \hat{y}^{\top} H+2 \hat{x}^{\top}\left(\frac{1}{2}\left(H^{\top} H\right)^{\top}+\frac{1}{2}\left(H^{\top} H\right)\right)=0
$$

$$
=-2 \tilde{y}^{\top} H+2 \hat{x}^{\top}\left(H^{\top} H\right)=0
$$

$$
\Rightarrow \hat{x}^{\top}=\tilde{y}^{\top} H\left(H^{\top} H\right)^{-1} \Rightarrow \hat{x}=\left(H^{\top} H\right)^{-1} H^{\top} \tilde{y}
$$

$$
\begin{aligned}
& \tilde{y} \nsim H \hat{x} \\
&=H\left(H^{\top} H\right)^{-1} H^{\top} \tilde{y}
\end{aligned}
$$

left inverse should look fomither of $H$
this is the projection of $\tilde{Y}_{\text {the }}$ onto $\left(H^{\top} H\right)^{-1} H^{\top} \times H=I$


Technically:
$\operatorname{Proj}_{H}(\tilde{y})=\operatorname{Proj} j_{H}\left(\operatorname{Proj}_{H}(\tilde{y})\right)$ ride inverse: $H^{\top}\left(H H^{T}\right)^{-1}$
"a projection is a map that is the identity e] but only on a subspace"
$y^{\prime} \in$ Range of $\mathrm{H} \exists z$ st. $y^{\prime}=\mathrm{Hz}\left\{\begin{array}{l}\text { withy } \\ y^{\prime} \text { in the }\end{array}\right.$ project $y^{\prime}$ onto range of $H \ldots \& \begin{aligned} & \text { basis of } \\ & \text { the cols }\end{aligned}$
$H\left(H^{\top} H\right)^{-1} H^{\top} y^{\prime}=H\left(H^{\top} H\right)^{-1} H^{\top} H z$

$$
\left[\begin{array}{l}
\tilde{y}_{y_{2}} \\
\tilde{y}_{2} \\
\tilde{y}_{3}
\end{array}\right]=\left[\left.H_{1} H_{2}\right|^{\left|\begin{array}{l}
\hat{x}_{1} \\
\tilde{x}_{2}
\end{array}\right|}\right.
$$

$$
=H z=y^{\prime}
$$



$$
H=\left\lceil H_{1} H_{2}\right]
$$

$$
\begin{aligned}
& \text { count } \begin{array}{c}
H \hat{x} \\
\frac{1}{1} \\
H \hat{x}: \begin{array}{c}
\text { projection } \\
\text { of } \hat{y} \text { ontortomarge } \\
\text { of }
\end{array} \\
H\left(\frac{\left.H H^{\top} H\right)^{-1} H^{\top} \tilde{y}}{\hat{x}}\right. \\
\hat{x}=\left(H^{\top} H^{-1} H^{\top} \tilde{y}\right.
\end{array}
\end{aligned}
$$

$H^{\top} H$ : needs to be invertible need cols of $H$ to be lin ind.
if cols of $H$ are lin dep $\Rightarrow \exists x+u$ st. $H x=0$
intuition: It has a nontrivial nullepace

$$
H x=0
$$

two diff sets of parameters $\quad H_{1} x_{1}+\cdots+H_{n} x_{n}=0$

$$
H=\left\lceil H_{1} \cdots H_{a}\right\rceil
$$ could give you the same meas.

$\rightarrow$ parameters re not unique

$$
\begin{array}{ll}
H(\hat{x}+\hat{n}) \\
H \hat{x}+H N^{\prime}
\end{array} \begin{aligned}
& \hat{n} \in \operatorname{Null}(H) \\
& \text { wont be able to } \\
& \text { distinguish between }
\end{aligned} \hat{x} \dot{<} \hat{x}+\hat{n}
$$

$\square$
$H^{\top} H$ needs to be positive definite.

$$
x^{\top} H^{\top} H x>0
$$

$$
\{\forall x>0
$$

$$
|H x|_{2}^{2}
$$

$$
H x \neq 0
$$

if $H^{\top} H$ is invertible than $H^{\top} H$ is $P D$ and all eigenvalues of $H^{\top} H$ are $>0$

E $\left|\begin{array}{c}y_{1} \\ 1 \\ \vdots \\ y_{m}\end{array}\right|=\left[\begin{array}{ccc}\sin \left(t_{1}\right) & 2 \sin \left(t_{1}\right) & 3 \sin (t) \\ \vdots & \vdots & \vdots \\ \sin \left(t_{m}\right) & 2 \sin \left(t_{m}\right) & 3 \sin \left(t_{2}\right)\end{array}\left|\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right| \Rightarrow H^{\top} H\right.$ not invertible scalar multiple of fist col.
NEWS FLASH: ROGER PENROSE NOBEL PRIZE WORK ON BLACK HOLES

- Moore Pentose Pseado Inverses
- Hawking-Penrose Singularity Theorems
- Penrose Tiling - aperiodic tiling
- Conformal Cyclic Cosmology

Y most nuts scifi cosmology idea.
Gauss:

$$
\hat{x}=\left(\frac{H^{\top} H}{J}\right)^{-1} H^{\top} \tilde{y}
$$

Gaussian row reduced
Elimination this to ar upper triangular
row reduction $\quad$ it $][:=1$ in PHYSICS

Sal col rank $\Rightarrow$ left inverse $\left(H^{\top} H\right)^{-1} H^{\top}$ fall row rand $\Rightarrow$ night inverse $H^{\top}\left(H H^{\top}\right)^{-1}$ neither are tall oak $\Rightarrow$ Moore pen rose pseudo inverse $H=u\left[\begin{array}{ll}\Sigma_{0} & 0 \\ 0 & 0\end{array}\right] v^{*}$ $H^{+}=\underbrace{V\left[\begin{array}{ll}\sum_{1}^{-1} & 0 \\ 0 & 0\end{array}\right] u^{*}}_{\substack{\text { general pseudo } \\ \text { inverse }}}$ operations

$$
\Rightarrow|\underbrace{E_{k} \cdots E_{1}} H| E_{k} \cdots E_{1}]
$$

$$
\begin{array}{cc}
y_{1} \\
\vdots \\
y_{m}
\end{array}=\left[\begin{array}{cc}
z_{1} & 1 \\
\vdots & \vdots \\
z_{m} & 1
\end{array}\right]\binom{m}{b}
$$

Ex: scalar dynamical system: $\dot{y}=A^{d} y+B^{\alpha} u$ $\dot{y}=\underline{a} y+\underline{b} u \rightarrow$ meas of $y$ over time. (s) discrete time
shitted by 1 System Identification

$$
\begin{aligned}
& y_{k+1}=\phi y_{k}+\Gamma u_{k} \quad \phi=e^{a \Delta t} \\
& \text { find } \phi, \Gamma \quad \Gamma=\int_{0}^{\Delta t} b e^{a t} d t \\
& {\left[\begin{array}{l}
\tilde{y}_{2} \\
\tilde{y}_{3}
\end{array}\right]=\left[\begin{array}{l}
\tilde{y}_{1}^{2} \\
u_{1} \\
y_{2} \\
u_{2}
\end{array}\right]\left[\begin{array}{l}
\phi \\
\Gamma
\end{array}\right]+\left[\begin{array}{l}
e_{2} \\
e_{3}
\end{array}\right]=\frac{b}{a}\left(e^{a \Delta t}-1\right)} \\
& \left.\begin{array}{c}
=\frac{b}{a}\left(e^{a \Delta t}-1\right) \\
\tilde{y}_{m} \\
\tilde{y}_{3} \\
\tilde{y}_{3}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{1} \\
\tilde{y}_{2} \\
u_{2} \\
\vdots \\
\tilde{y}_{m}, r_{m m}
\end{array}\right]\left[\begin{array}{l}
\phi \\
\Gamma
\end{array}\right]+\left[\begin{array}{c}
e_{2} \\
e_{3} \\
\vdots \\
e_{m}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
\hat{\phi} \\
\hat{r}
\end{array}\right]=\left(H^{\top} H\right)^{-1} H^{\top}\left[\begin{array}{c}
\tilde{y}_{2} \\
\vdots \\
\tilde{\tilde{y}}_{m}
\end{array}\right] \\
& \text { y's stifled }^{H}
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{H^{-1}}{E_{k}}-\frac{d}{E_{1}}}_{E_{1}}^{H^{-1}=E_{k} \cdots E_{1}} \\
& \text { Ex. } \quad \tilde{y}\left(t_{i}\right)=0.3 \sin \left(t_{i}\right)+0.5 \cos \left(t_{i}\right)+0.1 t_{1}+6+v_{i} \quad i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& y=m z+b
\end{aligned}
$$

Weighted Least Squares
$\Rightarrow$ trust some measurements more than others before: $J=\frac{1}{2} e^{\top} e$
now: $J=\frac{1}{2} e^{T}$ We where $W$ is a sym $P D$ weighting_matrix (positives definite)
modify $w_{i}$ to dust some measurements more than offers.
trust meas $i: w_{i}>0 \uparrow$ large
don't trust: $\omega_{j}>O d$ small meas j: $w_{j}>0 \backslash \begin{gathered}\text { small } \\ \text { lager }\end{gathered}$
ex. $\left.J=\frac{1}{2} e_{1} w w_{1} e_{1}+\frac{1}{2} \frac{\left.e_{2} w_{2} e_{2} e_{2}\right\}}{\text { small }}\right\} \begin{aligned} & \text { less penalty } \\ & \text { for lager }\end{aligned}$
$\Rightarrow$ in general...pick $\omega$ to be diagonal

$$
W=\left[\begin{array}{ccc}
\omega_{1} & & \\
0 & & \\
0 & & w_{m}
\end{array}\right]
$$

$$
\text { ex. } \left.J=\frac{1}{2} e_{1} w \psi_{1}+\frac{1}{2} e_{2} w_{2} e_{2}\right\} \begin{aligned}
& \text { for larger } \\
& \text { eros in } e_{2}
\end{aligned}
$$

$\Rightarrow$ WIS: $\hat{x}=\left(H^{\top}[\underline{\omega} H)^{-1} H^{\top} \| \tilde{y}\right.$
for perfect meas: $w_{i}$ set really large...
Constrained Least Squares
$m_{1}\left|\tilde{y}_{1}=H_{1} \hat{x}_{1}\right|+e_{1} \leftarrow$ uncertain meas.
$m_{2}\left|\tilde{y}_{2}=H_{2} \hat{x}\right|^{-n}$
certain meas
Note: kenaving that $x$ satifys sone linear constraints

$$
m_{2}\left[A x=b \Rightarrow A \hat{x}=b \quad H_{2}=A \quad \tilde{y}_{2}=b\right.
$$

$m_{1}+m_{2}>n$ if $m_{2}=n \hat{x}$ determined $\sim$ robot arm $m_{2}<n \quad m_{2}>n \quad \hat{x}$ overdetermined
$\left|\overline{m_{2}<n}\right|$ - if $n=10$, the $m_{2}=5$ maybe
$\left|m_{1}>n\right| \quad n_{1}=100$ maybe
$\min _{\hat{x}} J=\frac{1}{2} e_{1}^{\top} W_{1} e_{1}=\frac{1}{2}\left(\tilde{y}_{1}-H_{1} \hat{x}\right)^{\top} W_{1}\left(\tilde{y}_{1}-H_{1} \hat{x}\right)$
$\begin{array}{ll}\hat{x} & \tilde{y}=H_{2} \hat{x} \quad \text { it. objective }\end{array}$ sit. $\tilde{y}_{2}=H_{2} \hat{x} \leqslant$ constraints.
HOW DO WE SOLVE THIS:..
Lagrange Multipliers:
Ex. $\quad \min f(x) \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

before: $\frac{\partial f}{\partial x}=0$
Now:

$$
\begin{aligned}
& \text { Now: } \\
& \frac{\partial \nsim}{\partial x}=0: \text { stationarity } \\
& \text { condition }
\end{aligned}
$$



Fact:
$\frac{\partial f}{\partial x}+1 \begin{gathered}\text { lowed } \\ \text { sets }\end{gathered}$
$\frac{\partial \mathcal{Z}}{\partial \lambda}=0$ : feasibility $\left.\left.\begin{array}{c}\text { condition }\end{array}\right] \quad \Delta f=\frac{\left[\frac{\partial f}{\partial x_{1}} \frac{\partial f}{\partial x_{2}}\right.}{}\right]\left|\begin{array}{l}\Delta x_{1} \\ \Delta x_{2}\end{array}\right|=0$
violating constr
ie. don 4 violate constraints $0=\frac{\partial f}{\partial x} \Delta x \quad \begin{aligned} & \text { step along } \\ & \text { repel } \\ & \text { set } \rightarrow \Delta f=0\end{aligned}$

$$
\left.\frac{\partial \mathscr{L}}{\partial \lambda}=0: g(x)=0\right\} \rightarrow \text { make }
$$

sur constraints ore satisfied
stationarity:

$$
\frac{\partial \mathcal{L}}{\partial x}=0: \frac{\partial f}{\partial x}-\lambda^{\top} \frac{\partial g}{\partial x}=0 \Rightarrow \frac{\partial f}{\partial x}=\lambda^{\top} \frac{\partial g}{\partial x}
$$

at minimum $\frac{\partial f}{\partial x}$ hasto be a linear combination of derivative of
if $g_{( }(x)=0 \quad$ conspraints

$$
\begin{aligned}
& g_{2}(x)=0 \\
& \left.\lambda^{\top}=\left[\lambda_{1} \lambda_{2}\right] \rightarrow \quad \frac{\partial f}{\partial x}=\lambda_{1} \frac{\partial g_{1}}{\partial x}+\lambda_{2} \frac{\partial g_{2}}{\partial x_{2}}\right]
\end{aligned}
$$



$$
\frac{\partial f}{\partial x}=\lambda^{\top} \frac{\partial g}{\partial x}
$$

1 vive going needs to the. down to dale to then"
hill you constraints

$$
\frac{\partial f}{\partial x}=\lambda^{\top} \frac{\partial g}{\partial x} \left\lvert\, \begin{aligned}
& \text { the down hill } \\
& \text { direction is } \\
& \text { te the constraints }
\end{aligned}\right.
$$

Full optimality cords:

$$
\frac{\partial \mathscr{L}}{\partial x}=\frac{\partial f}{\partial x}-\lambda^{\top} \frac{\partial g}{\partial x}=0 \quad \frac{\partial \mathscr{L}}{\partial \lambda}=g(x)=0
$$

$\lambda$ : how much the constraints are pushing back agonist the objective function

$$
\frac{\partial f}{\partial x}=\lambda^{\top} \frac{\partial g}{\partial x} \quad \text { if }\left|\frac{\partial f}{\partial x}\right|_{2}^{\uparrow} \rightarrow|\lambda| \uparrow
$$

FROM ABOVE:

$$
\min _{\Lambda} J=\frac{1}{2} e_{1}^{\top} W_{1} e_{1}=\frac{1}{2}\left(\tilde{y}_{1}-H_{1} \hat{x}\right)^{\top} W_{1}\left(\tilde{y}_{1}-H_{1} \hat{x}\right) \leftarrow
$$

$$
\min _{\hat{x}}^{\hat{x}_{1} \rightarrow \tilde{y}_{2}}=H_{2} \hat{x} \ll \text { dojective }
$$

sit. $\rightarrow \tilde{y}_{2}=\mathrm{H}_{2} \hat{x} \longleftarrow$ constraints.
HoW do we solve THIS:-.

$$
\begin{aligned}
& \text { HOW DO WE SOLVE THIS: .. } \\
& \mathcal{L}=\frac{1}{2}\left(\tilde{y}_{1}-H_{1} \hat{x}\right)^{\top} W_{1}\left(\tilde{y_{1}}-H_{1} \hat{x}\right)-\lambda^{\top}\left(H_{2} \hat{x}-\tilde{y}_{2}\right)
\end{aligned}
$$

Solve for $\hat{x} \geqslant \lambda$ :

$$
\begin{aligned}
& \frac{\partial \mathscr{L}}{\partial \hat{x}}=-\hat{y}_{1}^{\top} W_{1} H_{1}+\hat{x}^{\top} H_{1}^{\top} W_{1} H_{1}-\underline{\lambda^{\top} H_{2}}=0 \\
& \frac{\partial \mathscr{L}}{\partial \lambda}=\left[\begin{array}{l}
\left.H_{2} \underline{\hat{x}-\tilde{y}_{2}=0}\right] \rightarrow \text { constraint. }
\end{array}\right] \\
& {\left[H_{2}=\tilde{y}_{2}\right.}
\end{aligned} \text { isn't encughto solve } f x \hat{x}
$$

[ $H_{2} \backslash \hat{x}=\tilde{y}_{2}$, isn't enough solve $f_{2} \hat{x}$

$$
\frac{\hat{x}^{\top}}{n}=\left(\tilde{y}_{1}^{\top} \omega_{1} H_{1}+\lambda^{\top} H_{2}\right)\left(H_{\text {needs to be }}^{\left(H_{1}^{\top} W_{1} H_{1}\right)^{-1}}\right.
$$

$$
\hat{x}=\left(H_{1}^{\top} W_{1} H_{1}\right)^{-1}\left(H_{1}^{\top} W_{1} \tilde{y}_{1}+\stackrel{\text { ninertide }}{\left.H_{2}^{\top} \lambda\right)}\right.
$$

$$
H_{2} \hat{x}=H_{2}\left(H_{1}^{\top} w_{1} H_{1}\right)^{-1}\left(H_{1}^{\top} w_{1} \tilde{y}_{1}+H_{2}^{\top} \lambda\right)=\tilde{y}_{2}
$$

$$
H_{2}\left(H_{1}^{+} w_{1} H_{1}\right)^{-1} H_{2}^{\top} \lambda=\tilde{y}_{2}-H_{2}\left(H_{1}^{\top} w_{1} H_{1}\right)^{-1} H_{1}^{\top} w_{1} \tilde{y}_{1}
$$

want to invert
should be invertible. .
if not $\rightarrow$ redundant constraints.

$$
\lambda=\left(H_{2}\left(H_{1}^{+} w_{1} H_{1}\right)^{-1} H_{2}^{\top}\right)^{-1}\left(\tilde{y}_{2}-H_{2}\left(H_{1}^{\top} w_{1} H_{1}\right)^{-1} H_{1}^{\top} w_{1} \tilde{y}_{1}\right)
$$

plug into and get finally.

$$
\hat{x}=\bar{x}+K\left(\tilde{y}_{2}-H_{2} \bar{x}\right)
$$

where

$$
\begin{aligned}
& \rightarrow K=\left(H_{1}^{\top} w_{1} H_{1}\right)^{-1} H_{2}^{\top}\left[H_{2}\left(H_{1}^{\top} W_{1} H_{1}\right)^{-1} H_{2}^{\top}\right]^{-1} \\
& \rightarrow \bar{x}=\left(H_{1}^{\top} w_{1} H_{1}\right)^{-1} H_{1}^{\top} w_{1} \tilde{y}_{1}
\end{aligned}
$$

$\bar{x}$ : unconstrained least squares solution
K: "gain matrix" _' how much K: gain matrix
multiply boy $\rightarrow \frac{k}{\sqrt{l}}\left(\tilde{y}_{2}-H_{2} \overline{\bar{x}}\right) \quad \begin{gathered}\text { how mandate } \\ \text { constraints }\end{gathered}$
how use does the
gain how mach does the matrix unconstrained soling violate sheconstaints
$\hat{x}=\bar{x}+k\left(\tilde{y}_{2}-H_{2} \bar{x}\right) \quad$ up three 1.2 book (Woodbury Matrix Idoutily)

$$
1
$$

