AA 549: Estimation and Kalman Filtering
Homework \#2
Due: Sunday, Apr 25, 2021 @ 11:59 pm

Notation Reference:

- True parameters: $x \in \mathbb{R}^{n}$
- Basis functions: $\left\{h_{i}(t)\right\}_{i=1}^{n}$, examples: $1, t, t^{n}, \cos (\omega t), \sin (\omega t)$,
- Data matrix: $H \in \mathbb{R}^{K \times n}$: Matrix of basis functions. Each column corresponds to a basis function.

$$
[H]_{k i}=h_{i}\left(t_{k}\right), \quad H=\left[\begin{array}{ccc}
h_{1}\left(t_{1}\right) & \cdots & h_{n}\left(t_{1}\right) \\
\vdots & & \vdots \\
h_{1}\left(t_{K}\right) & \cdots & h_{n}\left(t_{K}\right)
\end{array}\right]
$$

- Output: $y \in \mathbb{R}^{K}$: output with no noise.
- Model: Assumption about how the parameters relate to the output.

$$
y=H x
$$

- Measurement Noise: $v \in \mathbb{R}^{K}, v \sim \mathcal{N}(\mathbf{0}, R), R=R^{T} \succ 0 \in \mathbb{R}^{K \times K}$. If noise is independent in time, R diagonal.
- Measurements: $\tilde{y} \in \mathbb{R}^{n}$ what we get out of our sensors

$$
\tilde{y}=H x+v
$$

- Error (Residual): $e \in \mathbb{R}^{K}$ error between what we would expect the output to be with no noise and what we measure.

$$
e=\tilde{y}-y=\tilde{y}-H x
$$

- Squared error (sum):

$$
J=\frac{1}{2} \sum_{k}\left(e_{k}\right)^{2}=\frac{1}{2} e^{T} e=\frac{1}{2}|\tilde{y}-H x|^{2}=\frac{1}{2}(\tilde{y}-H x)^{T}(\tilde{y}-H x)=\frac{1}{2} x^{T} H^{T} H x-\tilde{y}^{T} H x+\frac{1}{2} \tilde{y}^{T} \tilde{y}
$$

- Weighted squared error: weight matrix $W=W^{T} \succ 0 \in \mathbb{R}^{K \times K}$

$$
J=\frac{1}{2} e^{T} W e=\frac{1}{2} x^{T} H^{T} W H x-\tilde{y}^{T} W H x+\frac{1}{2} \tilde{y}^{T} W \tilde{y}
$$

- Minimization Problem: $\min _{x} J(x)$
- Parameter estimate: $\hat{x} \in \mathbb{R}^{n}, \hat{x}=\operatorname{argmin}_{x} J$
- Predicted output: $\hat{y}=H \hat{x}$

1. Weighted Least Squares

(a) (PTS:0-2) Create 101 synthetic measurements \tilde{y} at 0.1 second intervals of the following:

$$
\tilde{y}_{j}=a \sin t_{j}-b \cos t_{j}+v_{j}
$$

where $a=b=1$, and v is a zero-mean Gaussian noise process with standard deviation given by 0.01 .
(b) (PTS:0-2) Determine the unweighted least squares estimates for a and b.
(c) (PTS:0-2) Using the same measurements, find a value of \tilde{y} that is near zero (near time $\pi / 4$), and set that "measurement" value to 1 .
Compute the unweighted least squares solution, and compare it to the original solution. Then, use weighted least squares to "deweight" the measurement.

2. LTI System Identification

Consider the discrete time LTI system given by

$$
x_{t}^{+}=A x_{t}+B u_{t}+w_{t}
$$

with $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$ and where $w_{t} \in \mathbb{R}^{n}, w_{i}(t) \sim \mathcal{N}(0, q)$ is noise in the dynamics.
(i) (PTS: 0-2) Assuming that x_{t} and u_{t} are known, write a least squares problem to solve for the matrices A and B.
(ii) (PTS: 0-2) Consider system matrices

$$
A=\exp \left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & -1 & -1 \\
-1 & 1 & -1
\end{array}\right] \Delta t\right), \quad B=\left[\begin{array}{ll}
1 & 1 \\
0 & 0 \\
0 & 1
\end{array}\right] \Delta t
$$

control input and initial condition

$$
u_{t}=\left[\begin{array}{c}
\cos (t) \\
\sin (2 t)
\end{array}\right], \quad x_{0}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],
$$

with $\Delta t=0.01$ and noise covariance $q=0.2$. Simulate the system for 5 seconds (500 time steps).
(iii) (PTS:0-2) With the generated trajectory and control input as known data, used least squares to estimate A and B. How good is your estimate?

3. ARX Model

Consider the following dynamic model:

$$
y_{k}=\sum_{i=1}^{n} \phi_{i} y_{k-i}+\sum_{i=1}^{p} \gamma_{i} u_{k-i}
$$

where u_{i} is a known input. This is known as the ARX (AutoRegressive model with eXogenous input) model for system identification.
(PTS:0-4) Given measurements of y_{i} and the known inputs u_{i} recast the above model into least squares form and determine estimates for ϕ_{i} and γ_{i}. (Your answers can be in terms of variable expressions.)

4. Picking Basis Functions

Data for temperature in the arctic over a period of years is given in the file: hw1-arcticdata.csv. Find the least squares fit to these data using:
(i) A polynomial curve fit with at least three terms: $h_{i}(t)=t^{i-1}, i \in\{1,2, \ldots\}$
(ii) A trigonometric curve fit with at least three terms: $h_{i}(t)=\sin (i \omega t)$. Note: you will need to choose ω.
(iii) A trigonometric curve fit with at least three terms: $h_{i}(t)=\left\{\begin{array}{ll}\sin \left(\frac{1}{2} i \omega t\right), & i \text { even } \\ \cos \left(\frac{1}{2}(i-1) \omega t\right), & i \text { odd }\end{array}, i \in\right.$ $\{1,2,3, \ldots\}$

For each case, produce the following:
(i) (PTS:0-2) A plot of the original data along with the least squares curve.
(ii) (PTS:0-2) Compute the root mean squared error (RMS).

$$
\mathrm{RMS}=\sqrt{(\hat{y}-\tilde{y})^{T}(\hat{y}-\tilde{y})}
$$

where $\hat{y}=H \hat{x}$.
(iii) (PTS:0-2) Experiment to determine the number of terms necessary to produce are an RMS error less than 1.5 degrees C .
(iv) (PTS:0-2) The prediction of temperature for the next year following the given data.

