AA 549: Estimation and Kalman Filtering Homework #6 Due: Sunday, May 16, 2021 @ 11:59 pm

For the following problems, feel free to write code that can perform multiple filters. Use some open-loop control u(t) of your choice. Also, experiment with various covariance matrices. Try not to just copy my code. I know everything so I will know. No specific requirements on what plots you produce; the deliverable is to get the code running, but it's worth plotting some things to see the performance.

1. Unscented Kalman Filter

Get the Unscented Kalman Filter working for the quadrotor model from last weeks homework.

$$\begin{split} \ddot{x}_1 &= -\frac{1}{m}(u_1 + u_2)\sin(\phi) + w_1, \qquad w_1 \sim \mathcal{N}(0, q_1) \\ \ddot{x}_2 &= \frac{1}{m}(u_1 + u_2)\cos(\phi) - mg + w_2, \qquad w_2 \sim \mathcal{N}(0, q_2) \\ \ddot{\phi} &= \frac{r}{I_{xx}}(u_1 - u_2) + w_3, \qquad w_3 \sim \mathcal{N}(0, q_3) \end{split}$$
Measurement
$$y = x + v, \qquad v \sim \mathcal{N}(0, R)$$

with state vector $x = [x_1 \dot{x}_1 x_2 \dot{x}_2 \phi \dot{\phi}]^T \in \mathbb{R}^6$. Pick whatever values for m, r, and I_{xx} and some arbitrary control trajectory. Since you're randomly picking an open-loop control trajectory feel free to ignore the gravity term if it's making your quad fall too much.