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From what I've read so far, it seems that a  particle filter is just a normal
particle filter used after marginalizing a variable from:

Rao-Blackwellized

!( , | )"# $# %#

I'm not really sure about that conclusion, so I would like to know the precise differences
between these two types of filters. Thanks in advance.
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are you asking how Rao-Blackwellized particle filter works in slam ? what do you mean by
regular filters ? nayab Feb 20 '14 at 9:53
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The Rao-Blackwellized Particle Filter (RBPF) as you say in your question performs a
marginalization of the probability distribution of your state space.

The particle filter uses sampling to represent the multivariate probability distribution of your
state space. Using samples to represent a distribution is firstly only an approximation, and
secondly not very efficient in most cases. The higher the dimension of the state, the more
particles you require. One trick introduced by Doucet et al. is to marginalize out a subset of
the state space, which can be handled in a more efficient way by using a Gaussian
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representation.

These figures from my  might help to visualize the concept. Let's say you have a joint
distribution over  and 
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instead of sampling jointly over  and , we can marginalize  and represent it as a
Gaussian distribution. In this way we just need to sample over ,
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which is much more efficient. Note that each sample now represent a distribution over .'
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This marginalization is very popular in SLAM. The reason is that jointly sampling over
position and map is impractical. The RBPF idea has been made popular in FastSLAM,
realizing that marginalizing the maps from the joint distribution makes the problem
tractable. As in the example above, each particle there represents a pose, correspondences
and a map. So there is one map per particle.

So the difference between an RBPF and a regular particle filter is that the RBPF samples
over a subspace of the probability distribution of the state, and represents the rest using a
different statistic. I have another related  on the math background of the Rao-
Blackwellization part.
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Page 151 should help,

https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf

where u is a sample (particle without weight)
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can be an effective approach to estimate systems that involve highly non-Gaussian
models.

4.10.3 Rao-Blackwellized Particle Filter
The dynamic model in Equation (4.162) represents a generic nonlinear model and

the noise terms may even be allowed to be non-Gaussian in the general particle fil-
ter. We have seen in §4.10.1 that if additive Gaussian noise is employed, then an
optimal particle filter can be used. A logical extension is to provide a more gen-
eral model that may be broken up into purely nonlinear aspects and conditionally
linear-Gaussian aspects. Several applications, such as ones that involve positioning,
navigation, and tracking,51 fall into this category. A Rao-Blackwellized particle fil-
ter52 (RBPF) exploits this structure by marginalizing out the conditional linear parts
and estimating them using exact filters, such as the Kalman filter.
The RBPF assumes that the state vector is decomposed into xk = [xT1k xT2k]T where

x1k+1 = f(x1k,w1k) (4.187a)

x2k+1 = Φk(x1k)x2k +Γk(x1k)uk +ϒk(x1k)w2k, w2k ∼ N(0,Qk) (4.187b)

ỹk = Hk(x1k)x2k+vk, vk ∼ N(0,Rk) (4.187c)

Note that w1k need not be Gaussian but w2k and vk are assumed to be zero-mean and
Gaussian. The system matrices for x2k, such as Φk, Γk, ϒk, etc., can be functions of
x1k in this formulation. From this point forward we will drop the explicit notation
used in Equation (4.187) that shows this dependence. In the RBPF we must be able
to sample from the distribution p(x1k+1|x1k) and hence it is usually assumed that
Equation (4.187a) has the form x1k+1 = f(x1k)+w1k. The basic concept of the RBPF
is to employ a Kalman filter on a set of particles to the conditional linear model given
by Equations (4.187b) and (4.187c). The Kalman filter alone cannot be used because
of the nonlinearities given by the model in Equation (4.187a).
A good derivation of the RBPF is provided in Ref. [53], which is shown here.

In the BF the importance function q(xk+1|X
( j)
k ,Ỹk+1) is chosen as the prior pdf

p(xk+1|x
( j)
k ). Assuming that x1k+1 is independent of x2k, conditioned upon x1k, the

weight update is then given by

w( j)
k+1 = w( j)

k p(ỹk+1|X
( j)
1k+1, Ỹk) (4.188)

where X( j)
1k+1 = {x( j)

10 , x( j)
11 , . . . , x( j)

1k+1} and

p(ỹk+1|X
( j)
1k+1, Ỹk) =

∫
p(ỹk+1|x2k+1, x

( j)
1k+1)p(x2k+1|X

( j)
1k+1, Ỹk) dx2k+1 (4.189)

Dynamics pnonlinear I 1 2 paging
mooFariance

EFTA a
Meas

I

b b D

Xiu particle slates N particles µ
for ea particle j y

x linear Gussian States
filius XII Pii't



288 Optimal Estimation of Dynamic Systems

From Equation (4.187c) we have

p(ỹk+1|x2k+1, x
( j)
1k+1) = N(ỹk+1|H

( j)
k+1x2k+1,Rk+1) (4.190)

The distribution p(x2k+1|X
( j)
1k+1, Ỹk) is given by

p(x2k+1|X
( j)
1k+1, Ỹk) =

∫
p(x2k+1|x2k, x

( j)
1k+1)p(x2k|X

( j)
1k , Ỹk) dx2k (4.191)

From Equation (4.187b) we have

p(x2k+1|x2k, x
( j)
1k+1) = N(x2k+1|Φ

( j)
k x2k+Γ( j)

k uk,ϒ
( j)
k Qkϒ

( j)T
k ) (4.192)

According to the RBPF approach, we are given the distribution p(x2k|X
( j)
1k , Ỹk),

which is precisely the one that we are updating on-line. Consistent with the Gaussian
nature of the problem setup, this distribution is itself Gaussian, which in fact is the a
priori distribution of the state in the Kalman filter equations. This allows us to write

p(x2k|X
( j)
1k , Ỹk) = N(x2k|x

( j)
2k ,P( j)

2k ) (4.193)

In the derivation of the Kalman filter, although not explicitly shown, the following
identity has been used for a distribution N(x|a,S), which is a Gaussian distribution
with mean a and covariance S:

∫
N(x|Aa,S)N(a|y,P) da= N(x|n,U) (4.194)

whereU = APAT +S and n= Ay. Identifying Equation (4.194) to Equation (4.191)
with the integrand terms given by Equations (4.192) and (4.193), we now have

p(x2k+1|X
( j)
1k+1, Ỹk) = N(x2k+1|x

−( j)
2k+1,P

−( j)
2k+1) (4.195)

where

x−( j)
2k+1 ≡Φ( j)

k x
( j)
2k +Γ( j)

k uk (4.196a)

P−( j)
2k+1 ≡Φ( j)

k P( j)
2k+1Φ

( j)T
k +ϒ( j)

k Qkϒ
( j)T
k (4.196b)

We again make use of Equation (4.194). But this time we apply Equation (4.189)
using Equations (4.190) and (4.195) to obtain

p(ỹk+1|X
( j)
1k+1, Ỹk) = N(ỹk+1|y

( j)
k+1,E

−( j)
k+1 ) (4.197)

where

y( j)
k+1 ≡ H

( j)
k+1x

( j)
2k+1 (4.198a)

E−( j)
k+1 ≡ H

( j)
k+1P

−( j)
2k+1H

( j)T
k+1 +Rk (4.198b)
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The remaining derivation follows the pattern of the Kalman update equations deriva-
tion in §3.3.1, with

p(x2k+1|X
( j)
1k+1, Ỹk+1) = N(x2k+1|x

( j)
2k+1,P

( j)
2k+1) (4.199)

This leads to

x( j)
2k+1 = x−( j)

2k +K( j)
k+1

[
ỹk+1−y

( j)
k+1

]
(4.200a)

P( j)
2k+1 =

[
I−K( j)

k+1H
( j)
k+1

]
P−( j)
2k+1 (4.200b)

where K( j)
k+1 = P−( j)

2k+1H
( j)T
k+1

(
E−( j)
k+1

)−1
. We can now make the identification P+( j)

2k+1 ≡

P( j)
2k+1 and x

+( j)
2k+1 ≡ x

( j)
2k+1 to maintain consistent notation with the Kalman filter.

At each time instant a set of N particles is developed for x( j)
1k , x

( j)
2k , and P

( j)
2k , which

is the covariance of x( j)
2k given the set X

( j)
1k = {x( j)

10 , x( j)
11 , . . . , x( j)

1k }. The samples x
( j)
1k

are drawn from p(x1k+1|x
( j)
1k ). An initial set of samples x( j)

20 can be drawn from an

initial estimate, denoted by x̂20, and covariance P20, and we can set P
( j)
20 = P20 for

every ith particle. However, different P( j)
20 can be chosen if desired. At each time

instant, perform the following steps:

• Draw x( j)
1k+1 ∼ p(x1k+1|x

( j)
1k ) for j = 1, 2, . . . , N.

• Perform a Kalman propagation for each particle j = 1, 2, . . . , N

x−( j)
2k+1 = Φ( j)

k x
+( j)
2k +Γ( j)

k uk (4.201a)

P−( j)
2k+1 = Φ( j)

k P+( j)
2k Φ( j)T

k +ϒ( j)
k Qkϒ

( j)T
k (4.201b)

• Update the weights for each particle j = 1, 2, . . . , N

w( j)
k+1 = w( j)

k
1

det
[
2πE−( j)

k+1

]1/2 exp
[
−1
2
e−( j)T
k+1

(
E−( j)
k+1

)−1
e−( j)
k+1

]
(4.202a)

w( j)
k+1←

w( j)
k+1

∑N
j=1w

( j)
k+1

(4.202b)

where e−( j)
k+1 ≡ ỹk+1−H

( j)
k+1x

−( j)
2k+1 and E

−( j)
k+1 ≡ H

( j)
k+1P

−( j)
2k+1H

( j)T
k+1 +Rk+1.

• Compute the Kalman gain for each particle j = 1, 2, . . . , N

K( j)
k+1 = P−( j)

2k+1H
( j)T
k+1

(
E−( j)
k+1

)−1
(4.203)
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Figure 4.15: Posterior Density

• Perform a Kalman update for each particle j = 1, 2, . . . , N

x+( j)
2k+1 = x−( j)

2k+1+K( j)
k+1

[
ỹk+1−H

( j)
k+1x

( j)
2k+1

]
(4.204a)

P+( j)
2k+1 =

[
I−K( j)

k+1H
( j)
k+1

]
P−( j)
2k+1 (4.204b)

State estimates and the state covariance can be computed using

x̂k≈
N

∑
j=1

w( j)
k x

( j)
k (4.205a)

Pk≈
N

∑
j=1

w( j)
k

{
x̃( j)
k x̃

( j)T
k +

[
0n1×n1 0n1×n2
0n2×n1 P+( j)

2k

]}
(4.205b)

x̃( j)
k = x( j)

k − x̂k (4.205c)

where x( j)T
k =

[
x( j)T
1k x+( j)T

2k

]T
, n1 is the length of x1, and n2 is the length of x2.

Resampling and roughening can also be done as needed. The RBPF appears to
be computationally expensive because a Kalman filter is executed on each particle.
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Also, x( j)
1k+1 particles must be drawn at each time step. The main advantage of the

RBPF is that fewer particles are typically needed than for a full filter, such as the BF.
Thus, depending on the system at hand, the RBPF may in fact be more computation-
ally efficient than the BF due to the reduction in the number of required particles.
This issue is of course application dependent. One must weigh whether or not a
RBPF provides the computational advantages over a standard PF while providing
the desired accuracy for the particular application at hand.

Example 4.13: In this example the RBPF is used to estimate the states of a finite
impulse response (FIR) filter.53 The truth model is generated using the following:

x1k+1 = cos(x1k)+ sin(x1k)+w1k
x2k+1 = x2k+w2k
ỹk = x1kx2k + vk

where w1k and w2k are zero-mean Gaussian noise processes with variances given
by 0.09 and 0.04, respectively, and vk is a zero-mean Gaussian noise process with
variance given by 0.01. The true states are initialized with x10 = 1 and x20 = 2,
and 100 synthetic measurements are generated. In this example f(x1k) = cos(x1k)+
sin(x1k), Φk = 1, and Hl = x1k.
The particles for x1 are generated using a Gaussian distribution with mean given

by cos(x10)+ sin(x10) and variance given by 0.09. The particles for x2 are generated
using a Gaussian distribution with mean 0 and variance 1. Note that there is a fairly
large error in the mean estimate for x2 at the initial time and P20 = 1 is used to
compensate for this error. A total of 500 particles is used.
Resampling is done at each time-step using systematic resampling, but no rough-

ening is done. A plot of the posterior pdfs for the second state as they evolve over
time is shown in Figure 4.15. This shows that the posterior pdf is qualitatively well
approximated by a Gaussian function since only one peak exists. A plot of the errors
and 3σ boundaries for the second state is shown in Figure 4.16. The errors are clearly
within their respective 3σ boundaries, which indicates that the RBPF is functioning
consistently.

4.10.4 Navigation Using a Rao-Blackwellized Particle Filter
We now consider another form of an RBPF, where the system can be partitioned

into linear and nonlinear parts that are coupled:

x1k+1 = f(x1k)+Φ1kx2k+ϒ1kw1k (4.206a)

x2k+1 = Φ2kx2k+ϒ2kw2k (4.206b)

ỹk = h(x1k)+vk (4.206c)
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Figure 4.16: State Estimate Errors for x2

Here it is assumed that w1k and w2k are zero-mean Gaussian noise processes that
may be correlated, so that

wk ≡
[
w1k
w2k

]
∼ N

([
0
0

]
,

[
Q1k Q12k
QT
12k Q2k

])
(4.207)

The pdf of x20 is assumed to be Gaussian with known mean and covariance given by
P20. The pdfs for x10 and vk are arbitrary but in most cases the pdf of vk is Gaussian,
with vk ∼ N(0,Rk).
Note that several navigation-type problems fall into the category of models given

by Equation (4.206), where x1 typically denotes position states and x2 denotes ve-
locity states, respectively.51 Hence, we call the ensuing particle filter the navigation
RBPF. Reference [54] provides a derivation of the RBPF for this case, which is
shown here. Using Bayes’ rule on p(X1k,x2k|Ỹk) gives

p(X1k,x2k|Ỹk) = p(x2k|X1k,Ỹk)p(X1k|Ỹk) (4.208)

Because the measurements, Yk, are conditionally independent of X1k, then the pdf
p(x2k|X1k,Ỹk) can be rewritten as

p(x2k|X1k,Ỹk) = p(x2k|X1k) (4.209)
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Consider the following system:

x2k+1 = Φ2kx2k+ϒ2kw2k (4.210a)

zk = Φ1kx2k+ϒ1kw1k (4.210b)

where zk ≡ x1k+1− f(x1k). A Kalman filter can now be applied to Equation (4.210).
Then, we have

p(x2k|X1k) = N(x−2k,P
−
2k) (4.211)

where x−2k and P
−
2k come from the Kalman filter. Due to the term Q12k, a correlated

Kalman filter must be employed. We replace w2k with

w̄2k = w2k−QT
12kQ

−1
1k w1k (4.212)

Then, the state equation for x2k becomes

x2k+1 = (Φ2k−CkΦ1k)x2k+ϒ2kw̄2k +Ck[x1k+1− f(x1k)] (4.213)

where
Ck = ϒ2kQT

12kQ
−1
1k (ϒT1kϒ1k)

−1ϒT1k (4.214)

We can write p(X1k|Ỹk) recursively by repeated use of Bayes’ rule, according to

p(X1k|Ỹk) =
p(ỹk|x1k)p(x1k|X1k−1)

p(ỹk|Ỹk−1)
p(X1k−1|Ỹk−1) (4.215)

Due to the nonlinear state equation for x1k, a PF is employed to solve Equa-
tion (4.215). The weights are represented by the likelihood p(ỹk|x

( j)
1k ). The parti-

cles are sampled from p(x( j)
1k+1|X

( j)
1k ). Using the state equation for x1k from Equa-

tion (4.206a) together with Equation (4.211) we have

p(x( j)
1k+1|X

( j)
1k ) = N(f(x( j)

1k )+Φ1kx
−( j)
2k ,Φ1kP−2kΦ

T
1k +ϒ1kQ1kϒT1k) (4.216)

Note that the covariances for all the particles are the same, so only one P−2k needs to
be employed.
A summary of the navigation RBPF is now provided.54 The first step is to generate

the x10 particles from p(x10) and set the weights, w
( j)
k , all equal to 1/N. The Kalman

filters are initialized with x−( j)
20 using an initial condition for x20 as the mean and

the P20 as the covariance. Here, we assume that the measurement noise is zero-mean
Gaussian. At each time instant perform the following:

• Update the weights for each particle j = 1, 2, . . . , N

w(i+1)
k = w( j)

k exp

[
−1
2

(
ỹk−y

( j)
k

)
R−1k

(
ỹk−y

( j)
k

)T]
(4.217a)

w( j)
k+1←

w( j)
k+1

∑N
j=1w

( j)
k+1

(4.217b)
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where y( j)
k ≡ h(x

( j)
1k ).

• Resample x( j)
1k if needed.

• Propagate the particles for each particle j = 1, 2, . . . , N

x( j)
1k+1 ∼ N(f(x( j)

1k )+Φ1kx
−( j)
2k ,Φ1kP−2kΦ

T
1k +ϒ1kQ1kϒT1k) (4.218)

• Compute the Kalman gain

Kk = P−2kΦ
T
1k[Φ

T
1kP
−
2kΦ

T
1k +ϒ1kQ1kϒT1k]

−1 (4.219)

• Update the Kalman filters for each particle j = 1, 2, . . . , N

x+( j)
2k = x−( j)

2k +Kk
[
x( j)
1k+1− f(x

( j)
1k )−Φ1kx

−( j)
2k

]
(4.220a)

P+
2k = [I−KkΦ1k]P−2k (4.220b)

• Propagate the Kalman filters for each particle j = 1, 2, . . . , N

x−( j)
2k+1 = Dkx

+( j)
2k +Ck

[
x( j)
1k+1− f(x

( j)
1k )
]

(4.221a)

P−2k+1 = DkP+
2kD

T
k +ϒ2kQ̄2kϒT2k (4.221b)

where

Q̄2k = Q2k−QT
12kQ

−1
1k Q12k (4.222a)

Ck = ϒ2kQT
12kQ

−1
1k (ϒT1kϒ1k)

−1ϒT1k (4.222b)

Dk = Φ2k−CkΦ1k (4.222c)

State estimates and the state covariance can be computed using

x̂k≈
N

∑
j=1

w( j)
k x

( j)
k (4.223a)

Pk≈
[
0n1×n1 0n1×n2
0n2×n1 P+

2k

]
+

N

∑
j=1

w( j)
k x̃

( j)
k x̃

( j)T
k (4.223b)

x̃( j)
k = x( j)

k − x̂k (4.223c)

where x( j)
k =

[
x( j)T
1k x+( j)T

2k

]T
, n1 is the length of x1, and n2 is the length of x2.

Example 4.14: In this example the navigation RBPF is used to track an unknown
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object’s position and velocity using a set of two range measurements. The states of
the unknown object are its planar position and associated velocity. The truth model
is generated using the following:

xk+1 =

⎡

⎢⎢⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦xk +wk

where Δt is the sampling interval, which is set to 0.1 seconds, and xk =
[x1k x2k x3k x4k]T . The final time of the simulation run is 240 minutes. The covari-
ance of wk is given by

Qk = q

⎡

⎣
(Δt3/3)I2×2 (Δt2/2)I2×2

(Δt2/2)I2×2 ΔtI2×2

⎤

⎦

where I2×2 is a 2×2 identity matrix. For simulation purposes we set q= 1×10−10.
The initial condition is given by x0 = [15 15 0 0]T . All units are in kilometers and
seconds. Two range measurements are provided at each time. The measurement
model is given by

ỹk =
[
[(X1k− x1k)2+(Y1k− x2k)2]1/2
[(X2k− x1k)2+(Y2k− x2k)2]1/2

]
+vk

where (X1k, Y1k) and (X2k, Y2k) represent two vehicles with radar sensors. For the
simulation X1k varies linearly from −5 km to 30 km over the 240 minute time run
and Y1k is set to zero for the entire time. Also, X2k = 10cos(0.001 tk) and Y2k =
30sin(0.005 tk). Synthetic measurements are generated using zero-mean Gaussian
noise with covariance Rk = 0.01I2×2 for vk.
For the navigation RBPF a total of 500 particles is used. The state vector is decom-

posed into the first two states and last two states. Initial particles are generated using
zero-mean Gaussian noise for both x10 and x20. The covariance for x10 is given by
64I2×2 and the covariance for x20 is given by P20 = 0.001I2×2. The various quantities
used in Equation (4.206) are given by

f(x1k) = x1k, Φ1k = ΔtI2×2, Φ2k = I2×2
ϒ1k = ϒ2k = I2×2

Q1k = (Δt3/3)I2×2, Q2k = ΔtI2×2, Q12k = (Δt2/2)I2×2

The navigation RBPF can now be executed with the aforementioned values. Resam-
pling is done at each time step using systematic resampling, but no roughening is
done. State estimates and covariances are computed using Equation (4.223). A plot
of the errors for the first state along with the respective 3σ boundaries is shown in
Figure 4.17. This indicates that the navigation RBPF is working properly.

Xu µµ
planarposition

planarvelocity constant velocity
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Figure 4.17: State Estimate Errors for x1

4.11 Error Analysis
The optimality of the Kalman filter hinges on many factors. First, although pre-

cise knowledge of the process noise and measurement inputs is not required, we must
have accurate knowledge of their respective covariance values. When these covari-
ances are not well known then the methods in §4.6 can be applied to estimate them
on-line. Also, errors in the assumed model may be present. Determining these errors
is usually a formidable task. This section shows an analysis of how the error covari-
ance of the nominal system is changed with the aforementioned errors. This new
covariance can be used to assess the performance of the nominal Kalman filter given
bounds on the model and noise quantities, which may provide insight to filter per-
formance and sensitivity to various errors. The development in this section is based
on continuous-time models and measurements. Also, in this section we eliminate the
explicit dependence on time for notational brevity. Consider the following nominal
system, which will be used to derive the Kalman filter:


