slam - Difference between Rao-Blackwellized particle filters and regular ones - Robotics Stack Exchange 5/18/21, 3:57 PM

Robotics

Difference between Rao-Blackwellized particle filters and
regular ones

Asked 7 years, 4 months ago Active 4 yearsago Viewed 7k times

From what I've read so far, it seems that a Rao-Blackwellized particle filter is just a normal
particle filter used after marginalizing a variable from:

13 t
p(re, s:|y)
I'm not really sure about that conclusion, so | would like to know the precise differences
5 between these two types of filters. Thanks in advance.

slam particle-filter

Share Improve this question edited Oct 6 '15 at 12:48 asked Jan 6 '14 at 22:15
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are you asking how Rao-Blackwellized particle filter works in slam ? what do you mean by
regular filters ? — nayab

2 Answers Active | Oldest | Votes

The Rao-Blackwellized Particle Filter (RBPF) as you say in your question performs a
marginalization of the probability distribution of your state space.

14

The particle filter uses sampling to represent the multivariate probability distribution of your
state space. Using samples to represent a distribution is firstly only an approximation, and

V secondly not very efficient in most cases. The higher the dimension of the state, the more
particles you require. One trick introduced by Doucet et al. is to marginalize out a subset of
the state space, which can be handled in a more efficient way by using a Gaussian
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representation.

These figures from my thesis might help to visualize the concept. Let's say you have a joint
distribution over X and Y

(A)d

0.0 0.0

instead of sampling jointly over X and Y, we can marginalize Y and represent it as a
Gaussian distribution. In this way we just need to sample over X,

which is much more efficient. Note that each sample now represent a distribution over Y.
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This marginalization is very popular in SLAM. The reason is that jointly sampling over
position and map is impractical. The RBPF idea has been made popular in FastSLAM,
realizing that marginalizing the maps from the joint distribution makes the problem
tractable. As in the example above, each particle there represents a pose, correspondences
and a map. So there is one map per particle.

So the difference between an RBPF and a regular particle filter is that the RBPF samples
over a subspace of the probability distribution of the state, and represents the rest using a
different statistic. | have another related question on the math background of the Rao-
Blackwellization part.

Share Improve this answer edited Apr 13 '17 at 12:44 answered Aug 25 '14 at 7:00
Follow == Community ¢ GrYE Jakob
- 1 QA<D 2,914

Page 151 should help,

-1 https://users.aalto.fi/~ssarkka/pub/cup_book online 20131111.pdf

where u is a sample (particle without weight)

Share Improve this answer Follow answered Apr 27 '17 at 5:44

EXX¥ anon
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Nice explanation in the book. For the answer it is always good to at least summarize the
content of the link, as it may not be available forever. — Jakob
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can be an effective approach to estimate systems that involve highly non-Gaussian
models.

4.10.3 Rao-Blackwellized Particle Filter

The dynamic model in Equation (4.162) represents a generic nonlinear model and
the noise terms may even be allowed to be non-Gaussian in the general particle fil-
ter. We have seen in §4.10.1 that if additive Gaussian noise is employed, then an
optimal particle filter can be used. A logical extension is to provide a more gen-
eral model that may be broken up into purely nonlinear aspects and conditionally
linear-Gaussian aspects. Several applications, such as ones that involve positioning,
navigation, and tracking,>! fall into this category. A Rao-Blackwellized particle fil-
ter>? (RBPF) exploits this structure by marginalizing out the conditional linear parts
and estimating them using exact filters, such as the Kalman filter.

The RBPF assumes that the state vector is decomposed into x; = [x!, x2,]7 where

Dpusss T
Non |iNeus™ ..)|x1k+1 ] i(zqk’w@) F;‘;Mr'.f)_ (4.187a)
\\\Ae{ “X2k+l;%xlk)x2k + (X)) ug + Y (X)) Wk, Wor ~ N(0,0x) (4.187b)
LN MenS Vi = Hy(X1)Xok + Vi, Vi ~N(0,Ry) G (4.187c)

Note that w;; need not be Gaussian but w,; and v are assumed to be zero-mean and
Gaussian. The system matrices for Xy, such as @, I'x, Yy, etc., can be functions of
X1t in this formulation. From this point forward we will drop the explicit notation
used in Equation (4.187) that shows this dependence. In the RBPF we must be able
to sample from the distribution p(Xjx41|X1x) and hence it is usually assumed that
Equation (4.187a) has the form x4, 1 = f(xy;) + Wy,. The basic concept of the RBPF
is to employ a Kalman filter on a set of particles to the conditional linear model given
by Equations (4.187b) and (4.187c¢). The Kalman filter alone cannot be used because
of the nonlinearities given by the model in Equation (4.187a).

A good derivation of the RBPF is provided in Ref. [53], which is shown here.

In_the B importance function q(XkH\X,((j ),YkH) is chosen as the prior pdf
P(Xkaq ‘X](CJ )). ssuming that Xy, 1 is independent of x,;, conditioned upon X, the
weight update is then given by 0{

Wi = Wi P(Fi+1] 1k+1° k) (4. )
where XEQH = {X%), ngl) ,XEQH} and

¥

p(Fe1 X, ) :/p(im\szH,Xﬁﬁl)p(szH\Xgﬁp?k) dXory1 (4.189)
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From Equation (4.187c) we have

p(Yk+1|X2k+17X§k)+1) N(Fiv1|H +1X2k+1>Rk+1)] (4.190)

The distribution p(Xp+ | |X Y;) is given by

1k+1°

P(X2k+1’X83+17 Y;) = /P(X2k+1|x2k> xﬁiﬁl)p(sz!XEQ, Y) dxo (4.191)
—

From Equation (4.187b) we have
P(X2k+1\X2k,ng)+1) N(X2k+1\q) X2k+r( ug, Y Q Y ) (4.192)

According to the RBPF approach, we are given the distribution p(XZk\Xg{), Y,
which is precisely the one that we are updating on-line. Consistent with the Gaussian
nature of the problem setup, this distribution is itself Gaussian, which in fact is the a
priori distribution of the state in the Kalman filter equations. This allows us to write

p(xai X\ Y0 = N(xe x5, P (4.193)

In the derivation of the Kalman filter, although not explicitly shown, the following
identity has been used for a distribution N(x|a,S), which is a Gaussian distribution
with mean a and covariance S: $

/ N(x|Aa,S)N(aly, P) da = N(x|n,U) (4.194)

where U = APAT +Sandn = Ay. Identifying Equation (4.194) to Equation (4.191)
with the integrand terms given by Equations (4.192) and (4.193), we now have

p(xas1 X2, 1, Vi) = N(xaerr 55,7, Prt)) (4.195)

where
) = Y >x§,3+r<) (4.196a)
Pl =R, 0T 0T s

We again make use of Equation (4.194). But this time we apply Equation (4.189)
using Equations (4.190) and (4.195) to obtain

P(Fea X510 Vi) = NG Iy ECD) (4.197)

where
y/(cizl H/£+)1 ng)+1 (4.198a)
Et = Py DT + Ry (4.198b)
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The remaining derivation follows the pattern of the Kalman update equations deriva-
tion in §3.3.1, with

pxais1 X7, 1 Viesr) = N(Xarya[x57, 1, P ) (4.199)
This leads to
ch)ﬂ = X;k(J) + K/E-Ji-) 1 [ykﬂ - yl(cizl] (4.2002)
() () () | p—()
P2k+1 = {I Kk+1Hk+1} P2k4{1 (4.200b)
. . . . —1 .

where K,Efr)l = Pz_kSﬁH,Ei)lT (E k_ Jr({)> . We can now make the identification P;;Sﬁ =

Pz(lﬁrl and X;c(i)l = ngﬂ to maintain consistent notation with the Kalman filter.

At each time instant a set of N particles is developed for XSQ, Xg() , and Pz(/{) , which
is the covariance of ng given the set XSQ = {x%) , ngl)’ e, xﬁ)} The samples XSQ
are drawn from p(Xyj 1 |X8€)) An initial set of samples X%) can be drawn from an

initial estimate, denoted by X;g, and covariance P, and we can set Pz(é) = Py for

i . - — _—
every i particle. However, different Pz((J)) can be chosen if desired. At each time
instant, perform the following steps Hon
P s p/’"f“h"u' fmn N Jew a Sounples Ge

# e Draw X(lfc)Jrl Np(xlkH\Xlk yfor j=1,2,...,N. Nive uhrtﬂm
— ~ni—
Perform a Kal tion for cach particle j = 1,2, ..., N |/ | ,
‘ e Crrorm a Kalman propagation 1or €acn partcie j y Ly y - fl“‘(,r
» (% ) _ gtV D%) T
¢“ = Yl - x =) x5 T (4.201a)
» P = ol pl Vol vl Qkaj)T (4.201b)
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)

e Update the weights for each particle j=1,2,..., N

] ) 1 1 . a1
W1(<J421 Wl(cj) 1/2 SXP [— zekﬂ)T (EkjL({)> ek+(]1)] (4.202a)
o]
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where ekJrl = Vi1 — k+1X2k+1 andEk+1 =H:, 2k+1Hk+1 + Ricy1

k+1

° Compute the I‘(j‘man ggﬁ for each particle j =1,2,...,N
) k) — p= ) g1 ( E—(j))‘ (4.203)

k+1 2k+1"" k41
whet

we N> ornde  alman
§ 5861):1\ Por Ca W'Porhde-

ﬂ,.,e)t&; o Lc.._



290 Optimal Estimation of Dynamic Systems
(Sumn“i -, 5
—_—
- eNolve ?arh‘dt/s
for X, OMeasicrS

- $or ea. Fa—NJﬂ-—

1.5«
wWe wn Q scru’i—
 dan Qliee
% 1 o &r “Ar MAPn ?
a Covgaace UO)"
5 2O p
()
2 054
o COAAI‘!QAG“ oA
“M- vaie e{'
0.l ©)
100 o ?(u‘
8
2
Time 0 1 Sample Space
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e Perform a Kalman update for each paicle j=12,....N
D esss——
ue i X;Lk(i)l = Xz_k(—Jk)l JrKl£+)1 [Ykﬂ _HIEQngﬁJ (4.204a)
+(J) ) U | p=0)
b} = P2k—|—1 = [1 Kk+1Hk+1] Py (4.204b)
State estimates and the state covariance can be computed using
o N N
— —_— Hx Y wl'x) g— (4.2052)
=l
N . N 0,1, xn: Oy
—= | paSw {i,ﬁ”i,i’” + [o = } (4.205b)
j=1 —m npxXny §+ 2k
| — /) =xU) g, (4.205¢)
. T
where x,(cj)T = {ng)T x;k( )T} , np 1s the length of x;, and n; is the length of x,.

Resampling @ roughening can also be done as needed. The RBPF appears to
be computationally expensive because a Kalman filter is executed on each particle.
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Also, XEQH particles must be drawn at each time step. The main advantage of the
RBPF is that fewer particles are typically needed than for a full filter, such as the BF.
Thus, depending on the system at hand, the RBPF may in fact be more computation-
ally efficient than the BF due to the reduction in the number of required particles.
This issue is of course application dependent. One must weigh whether or not a
RBPF provides the computational advantages over a standard PF while providing
the desired accuracy for the particular application at hand.

Example 4.13: In this example the RBPF is used to estimate the states of a finite
impulse response (FIR) filter.’> The truth model is generated using the following:

Xik41 = €O8(X1x) + sin(xix) + wik
X2k41 = X2k + Wi
Yk = X1xXok + vk

where wy; and wy; are zero-mean Gaussian noise processes with variances given
by 0.09 and 0.04, respectively, and v, is a zero-mean Gaussian noise process with
variance given by 0.01. The true states are initialized with x;9 = 1 and xp9 = 2,
and 100 synthetic measurements are generated. In this example f(x1;) = cos(x1x) +
sin(xlk), q)k =1, and Hl = X1k-

The particles for x| are generated using a Gaussian distribution with mean given
by cos(x10) + sin(xjo) and variance given by 0.09. The particles for x, are generated
using a Gaussian distribution with mean O and variance 1. Note that there is a fairly
large error in the mean estimate for x, at the initial time and P,y = 1 is used to
compensate for this error. A total of 500 particles is used.

Resampling is done at each time-step using systematic resampling, but no rough-
ening is done. A plot of the posterior pdfs for the second state as they evolve over
time is shown in Figure 4.15. This shows that the posterior pdf is qualitatively well
approximated by a Gaussian function since only one peak exists. A plot of the errors
and 30 boundaries for the second state is shown in Figure 4.16. The errors are clearly
within their respective 30 boundaries, which indicates that the RBPF is functioning
consistently.

7‘\\«.“ = ﬁu; + ot XLL

4.10.4 Navigation Using a Rao-Blackwellized Particle Filter

We now consider another form of an RBPF, where the system can be partitioned
into linear and nonlinear pais that are,coupled:
\inear meas egn % v 4 |
be Yun .—F(fxuyﬁ— Xkt 1 = f(Xu) + PraXox + VWi (4.206a)
X2k+1 TS Doxor + YouWak (4.206b)

1ACoS™
ddmk.s J ¥k = h{x1 ) vi (4.206¢)
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Figure 4.16: State Estimate Errors for x,

Here it is assumed that wy; and wy; are zero-mean Gaussian noise processes that
may be correlated, so that™ == ——

Wik 0] [0 \O1x
wef ([ RE e

The pdf of x¢ is assumed to be Gaussian with known mean and covariance given by
P>o. The pdfs for xg and v, are arbitrary but in most cases the pdf of v, is Gaussian,
with vj ~ N(O,Rk).

Note that several navigation-type problems fall into the category of models given
by Equation (4.206), where ﬁtypically denotes position states and x, denotes ve-_
loci'ii itates, respectively.”! Hence, we call the ensuing particle filter the navigation

R . Reference [54] provides a derivation of the RBPF for this case, which is
shown here. Using Bayes’ rule on p(Xjy,Xox|Yy) gives
P (X, Xk Yie) = p (k| Xk, Yie) p (X Y) (4.208)

Because the measurements, Yy, are conditionally independent of X, then the pdf
p(x0¢|X 1%, Yi) can be rewritten as

P (x0k| Xk, Yi) = p (x4 Xi1x) (4.209)
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ke on X
Consider the following system: RWW\ (7N Kal‘MM Q r R

; = 9 )
s’( \ Xok+1 = PoXok -I-Y2XW2;[ Aﬁ'\w ‘s,f;f (4.210a)
=D A TN)= z = YW | 4.210b
(et )= Z Xk + Y 1kWik | o w (4. )

where z; = X1 — f(Xx). A Kalman filter can nﬂv be applied to Equation (4.210).
Then, we have

P(Xok| Xix) = N(X5, Pyy) (4.211)

where x,, and P,, come from the Kalman filter. Due to the term Q,y, a correlated

Kalman filter must be employed. We replace wy; with -
. ]
War = Wor — Q1 Oy Wik (4.212)

Then, the state equation for x,; becomes

X2kt 1 = (Pok — CeP1x )Xok + YouWor + Ci X111 — £(X14)] (4.213)
D o«
where
Cr = Y010 01 (YT, Y1)~ YT, (4.214)
We can write p(X|Yy) recursively by repeated use of Bayes’ rule, according to
- P(ViX1k) P (X1 | X k- o
p(Xyl¥y) = PORPuXu) o gy (4.215)
P(FilYi-1)

Due to the nonlinear state equation for x;, a PF is employed to solve Equa-
tion (4.215). The weights are represented by the likelihood p(yk|xg£). The parti-

cles are sampled from p(xgﬁrl |X8{)) Using the state equation for xy; from Equa-
tion (4.206a) together with Equation (4.211) we have

p(x XU = N(Ex\)) + @ pxy ) @ Py @+ Yo Yl (4216)

Note that the covariances for all the particles are the same, so only one P;, needs to
be employed.

A summary of the navigation RBPF is now provided.>* The first step is to generate
the x;¢ particles from p(xjo) and set the weights, w,(cj ), all equal to 1 /N. The Kalman
. .. — ) el — —_—
filters are initialized with X,,”"’ using an initial condition for x5 as the mean and
the P»q as the covariance. TIete, we assume that the measurement noise is zero-mean

Gaussian. At each time instant perform the following:

e Update the weights for each particle j=1,2,..., N O
— 1

W/(JH) = W;(cj) exp [—% (ik - yl(f )) R;! (ik - y,(f ) ) T] (4.217a)
‘\d\“"’& - T 0 T
el / . J .
\ J‘O" < W/(f+)1 - WLI() m»\omnltlae..(4.217b)
S SLowd, T
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()
where ykJ =h(x;?)

e Resample XEQ if needed.

e Propagate the particles for each particle j =1, 2, ...,

Optimal Estimation of Dynamic Systems

N

A} & -
E Cj ‘op\ — X(1;<)+1 ~ N(f(X(li)) + (I)lkxzk( 7 (I)Ikpqu)lk + YlelkY1k
(]
R ® = *
‘Qb( ’)(w_ e Compute the Kalman gain
X G 'S — | K= Py @1 [@1 Py @1, + Y1k Qui Y1) ™
"8

filters for each particle j =1,2,...,N

gﬂ”(wn ¥ )

Xop" = X2_k(1) + Kk XEQJA - f(xgk)

(I)lkxzk(])i|
_-
Py = — KDy Ps,

P ——— e

J“Propagate the Kalman filters for each particle j =1, 2, .

ea‘or“

sz(+)1 = DkXZk +C Xu;i —1£( Xlk

Py = Dszka + Y2 00k Y3

—

? , \G? State estimates and the state covariance can be computed using

O = O — 01101} Q124
Cr = Y Q1 01 (Y1 Y1) 1Y,
Dy = Oy — Ci Dy

| we

¢~ iwm ()

N
Pk% [Onlxnl n1><n2] E ](C i/({ ](C

On2><n1

X]((J) _ XI({J) _

o>

k

\ eshivale con o A

where x,ﬁj ) — {Xg k) d x;k( nr

(4.218)

(4.219)

(4.2202)
(4.220b)

aNm
(HZla)

(4.221b)

(4.222a)

(4.222b)
(4.222¢)

(4.2232)

(4.223b)

(4.223¢)

T
} , n is the length of x, and n, is the length of x,.

Example 4.14: In this example the navigation RBPF is used to track an unknown
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object’s Eosition and velocity using a set of two range measurements. The states of
the unknown object are its planar position and associated velocity. The truth model
is generated using the following:

X \le?“;" 10A: 0

X, = 010 Ar
e Xp+1 = X) + Wy

0010 ¢

Ve 1= ]er ' UJ
PN N ety 19001 — constaut veloe
where Ar is the sampling interval, which is set to 0.1 seconds, and x; =

X1k X0k X3k X4k]T. The final time of the simulation run is 240 minutes. The covari-
ance of wy is given by

(Al3/3)12x2 (At2/2)12x2
Or=q
(A2 /2)hyy  Athyo

where 17 is a 2 x 2 identity matrix. For simulation purposes we set g = 1 X 10719,
The initial condition is given by xo = [15 15 0 0]7. All units are in kilometers and
seconds. Two range measurements are provided at each time. The measurement
model is given by

[(X1k = x12)% 4 (Yig — x2) 1] /2

+v
[(Xok — x1%)% + (Yar — x21) 1] 1/2 ¢

Yi =
where (X1, Y1x) and (Xy, Yz ) represent two vehicles with radar sensors. For the
simulation Xj; varies linearly from —5 km to 30 km over the 240 minute time run
and Yy, is set to zero for the entire time. Also, Xp; = 10c0s(0.001#;) and Yo =
30sin(0.00517). Synthetic measurements are generated using zero-mean Gaussian
noise with covariance R, = 0.01/, -, for vy.

For the navigation RBPF a total of 500 particles is used. The state vector is decom-
posed into the first two states and last two states. Initial particles are generated using
zero-mean Gaussian noise for both xj9 and x,g. The covariance for x;q is given by
641, ., and the covariance for Xy is given by P>g = 0.001/, 7. The various quantities
used in Equation (4.206) are given by

f(x1x) =Xk, Purx=Athy, Py=Dhx
Yik=Yu=hx

Qi = (AP /3)hy2,  Qu=Athya, Qi = (A?/2)Dys

The navigation RBPF can now be executed with the aforementioned values. Resam-
pling is done at each time step using systematic resampling, but no roughening is
done. State estimates and covariances are computed using Equation (4.223). A plot
of the errors for the first state along with the respective 30 boundaries is shown in
Figure 4.17. This indicates that the navigation RBPF is working properly.
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4.11 Error Analysis

The optimality of the Kalman filter hinges on many factors. First, although pre-
cise knowledge of the process noise and measurement inputs is not required, we must
have accurate knowledge of their respective covariance values. When these covari-
ances are not well known then the methods in §4.6 can be applied to estimate them
on-line. Also, errors in the assumed model may be present. Determining these errors
is usually a formidable task. This section shows an analysis of how the error covari-
ance of the nominal system is changed with the aforementioned errors. This new
covariance can be used to assess the performance of the nominal Kalman filter given
bounds on the model and noise quantities, which may provide insight to filter per-
formance and sensitivity to various errors. The development in this section is based
on continuous-time models and measurements. Also, in this section we eliminate the
explicit dependence on time for notational brevity. Consider the following nominal
system, which will be used to derive the Kalman filter:



