Lest time:

- Marginal
- conditional

Multivariate Gaussian
Jointly Gaussian.
$x=\left(x_{1} \ldots x_{n}\right)$
is Jointly Gamssim
if any linear comb
is Gaussian

if you slice the distribution along any affine space (and renornalize) \rightarrow Gaussian

Possible to have Gaussian marginal distributions.
but not be jointly Gaussian

there is some way to slice the distribution 50 you don't get a Gaussian (even tho the Maggiads were
Gaussian
the vector has Gaussian
Marginals under any
coordinate transformation on x.

Joint Distributions i Conditional Distributions marginal distributions
x_{1}, x_{2} random variables

$$
p\left(x_{1}, x_{2}\right)=\frac{p\left(x_{1} \mid x_{2}\right)}{\underset{\substack{\text { Conditional } \\ \text { of } x_{1}}}{p\left(x_{2}\right)}=p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)}
$$

given x_{2}
Independence:
$x_{1} \dot{\varepsilon} x_{2}$ if

$$
p\left(x_{1} \mid x_{2}\right)=p\left(x_{1}\right)
$$

knowing x_{2} doesn't give you any information about x_{1}

$$
p\left(x_{2} \mid x_{1}\right)=p\left(x_{2}\right)^{\prime}
$$

Bayes Rule:

$$
p\left(x_{1} \mid x_{2}\right) p\left(x_{2}\right)=p\left(x_{2} \mid x_{1}\right) p\left(x_{1}\right)
$$

Another Defu of Ind:

$$
P\left(x_{1}, x_{2}\right)=P\left(x_{1}\right) p\left(x_{2}\right)
$$

$$
P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{1}\right)}{P\left(x_{2}\right)} P\left(x_{2} \mid x_{1}\right) \quad P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)}{P\left(x_{2}\right)}
$$

Describing Distributions:
Expected $E[f(x)]=\int_{x}$, vector...
value: $E[f(x)]=\int_{x}^{\prime} f^{\prime}(x) p(x)^{s} d x$
vector on average, the value scalar of $f(x)$ you expect to see.
mean $f(x)=x$.

$$
\mu=E[x]=\int_{x} x p(x) d x .
$$

covariance

$$
f(x)=(x-\mu)^{2}
$$

$$
\sigma^{2}=E\left[(x-\mu)^{2}\right]=\int_{x}(x-\mu)^{2} p(x) d x
$$

always
posit

$$
x \in \mathbb{R}^{n}
$$

$$
\mu \in \mathbb{R}^{n} \quad \mu=E[x]=\int_{x} x p(x) d x
$$

Covariance
"how far away from the mean is most of the mass"

$$
=\int_{x_{1}} \cdots \int_{x_{n}}\left|\begin{array}{l}
x_{x_{1}} \\
x_{a_{a}}
\end{array}\right| p\left(x_{1} \cdots x_{n}\right) d x_{1} \cdots d x_{n_{n}}
$$

$$
\begin{aligned}
& \Sigma \in \mathbb{R}^{n \times n} \\
& \Sigma=E\left[(x-\mu)(x-\mu)^{\top}\right]=\int_{x}(x-\mu)(x-\mu)^{\top} p(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{x}\left[\begin{array}{c}
x_{1}-\mu_{1} \\
\vdots \\
x_{n}-\mu_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1}-\mu_{1}
\end{array} \cdots x_{n}-\mu_{n}\right] \\
& \left.=\int_{x} \left\lvert\, \begin{array}{ccc}
\left(x_{1}-\mu_{1}\right)^{2} & \cdots & \left(x_{1}-\mu_{1}\right)\left(x_{n}-\mu_{n}\right) \\
\vdots & \vdots \\
\left(x_{1}-\mu_{1}\right)\left(x_{n}-\mu_{n}\right) \\
\cdots & \left(x_{n}-\mu_{n}\right)^{2}
\end{array}\right.\right] p(x) d x . \\
\sum_{i j} & =\int_{x}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) p(x) d x
\end{aligned}
$$

$x \in \mathbb{R}^{2} \quad x_{1}, x_{2}$ are indep. $\sum \in \mathbb{R}^{2 \times 2}$

$$
\begin{aligned}
\sum_{12} & =\int_{x}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) p(x) d x . \\
& =\int_{x_{1}} \int_{x_{2}}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right) d x_{1} d x_{2} \\
& =\left(\int_{x_{1}}\left(x_{1}-\mu_{1}\right) p\left(x_{1}\right) d x_{1}\right) \int_{x_{2}}\left(x_{2}-\mu_{2}\right) p\left(x_{2}\right) d x_{2} \\
& =\left(\int_{x_{1}} x_{1} p\left(x_{1}\right) d x_{1}-\mu_{1} \int_{x_{1}} p\left(x_{1}\right) d x_{1}\right)\left(\mu_{2}-\mu_{2}\right.
\end{aligned}
$$

$\Sigma_{12}=0 \Longleftarrow x_{1} \dot{\xi}_{1} x_{2}$ indep.
In general if $x_{i} \dot{\varepsilon}, x_{j}$ ave indep.

$$
\sum_{i j}=0
$$

Multivariate Gaussions
x_{i} s ind. Σ diag

$x_{i}^{\prime} \sin _{x_{2}} \sum_{\text {ind }}^{\text {not }}$ diag

Fund. Tum Lin A_{g}. $A \in \mathbb{R}^{m \times n}$

CODOMAIN $\quad y=A x$

$$
\mathbb{R}^{n}=R(A) \oplus^{\top} N\left(A^{\top}\right)
$$

SUD:

$$
\begin{aligned}
A & =u\left[\begin{array}{ll}
\Sigma_{0} & 0 \\
0 & 0
\end{array}\right] V^{\top} \\
& =\left[\begin{array}{cc}
u_{1} u_{2} \\
1
\end{array}\right]\left[\begin{array}{ll}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\top} \\
v_{2}^{\top}
\end{array}\right]
\end{aligned}
$$

General system of Equs:

$$
y=A x \quad A \in \mathbb{R}^{m \times n}
$$

computing an inverse step by step $\rightarrow G$ aussian Elimination Rowluct. E_{i} : elementary matrices roper. $E_{i} A \rightarrow$ performs a ow operation on A. if A was invertible..

$$
\rightarrow \frac{E_{k} \cdots E_{2}\left(E_{1} A\right)}{A^{-1}}=I
$$

for full row rank, A Sat

$$
E_{k} \cdots E_{1} A=\left[I_{1} * \ll\right.
$$

for full col rank, A tall

$$
\left.E_{k} \cdots E_{1} A=\left\lvert\, \frac{I}{O}\right.\right\rceil
$$

general case $A \in \mathbb{R}^{m \times n} \quad A=\left[A_{1} A_{2}\right]$

$$
\begin{aligned}
& \rightarrow E_{k} \cdots E_{1} A=\left[\begin{array} { l l }
{ I } & { B } \\
{ \substack { \text { lib } \\
\text { dep } \\
\text { down } } }
\end{array} \rightarrow \left[\begin{array}{l}
\text { columbus of } A_{2} \\
\text { are } \operatorname{lin} \text { dep } \\
\text { on cols of } A_{1}
\end{array}\right.\right. \\
& A=\left(E_{k} \cdots E_{1}\right)^{-1}\left(E_{k} \cdots E_{1}\right) A \quad\left(E_{k} \cdots E_{1}\right)^{-1}=E_{1}^{-1} \cdots E_{k}^{-1} \\
& =\left(E_{k} \cdots E_{1}^{-1}\right)^{I}\left[\begin{array}{cc}
工 & B \\
0 & 0
\end{array}\right] \\
& =\left[A_{1} \mid M\right]\left[\begin{array}{lll}
\frac{1}{2} & \frac{B}{B} & E \\
0 & B \text { is andrix } \\
0 & \text { set. } & A_{2}=A_{1} B \mid
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { the cols of } A_{1} \\
& =\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]
\end{aligned}
$$

M depends on $E_{k} \cdots E_{1} \rightarrow$ not unique M spans $N\left(A^{\top}\right)$
from this can easily get a basis for

$$
N(A) \quad N=\left|\begin{array}{c}
-B \\
I
\end{array}\right| \leftarrow
$$

$$
\begin{aligned}
A N & =\left[\begin{array}{ll}
A_{1} & M
\end{array}\right]\left[\begin{array}{cc}
I & B \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
-B \\
I
\end{array}\right] \\
& =1 \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{ll}
=1 & \left\lceil\begin{array}{l}
0 \\
0
\end{array}\right\rceil
\end{array}
$$

colsof A_{1} basis for $R(A)$

1. M basis for $N\left(A^{\top}\right)$
" $\left\lceil\frac{T}{B^{T}}\right\rceil$ basis for $R\left(A^{\top}\right)$
" $\left[\left.\begin{array}{c}-B \\ I\end{array} \right\rvert\,\right.$ basis for $N(A)$
finding solution:

$$
\begin{aligned}
& y=A x, \\
& y=\left[\begin{array}{cc}
A_{1} & M
\end{array}\right]\left[\left.\begin{array}{ll}
\underline{I} & B \\
- & 0
\end{array}| | \begin{array}{l}
\frac{x_{1}}{x_{i}}
\end{array} \right\rvert\,=\frac{A_{1}}{}\left(\begin{array}{l}
x_{1}+B x_{2}
\end{array}\right)\right.
\end{aligned}
$$

$\underline{y} \in \mathbb{R}\left(A_{1}\right)$: necessary

$$
\begin{aligned}
y=A_{1} x_{1} \Rightarrow A_{1}^{\top} y & =A_{1}^{\top} A_{1} x_{1} \\
\underline{x}_{1} & =\left(A_{1}^{\top} A_{1}\right)^{-} A_{1}^{\top} y
\end{aligned}
$$

$$
\begin{aligned}
& {\left[A_{1} M\right]=\left(E_{k} \cdots E_{1}\right)^{-1}} \\
& E_{k} \cdots E_{1}=\left[\begin{array}{c}
\left(A_{1}^{\top} A_{1}\right)^{-1} A_{1}^{\top} \\
*
\end{array}\right] \\
& \left.\left.\left.E_{u} \cdots E_{1}|A| y \mid=\iint\left(A_{1}^{\top} A_{1}\right)^{-1} A_{1}^{\top}\right] A \mid \int\left(A_{i}^{\top} A_{1}\right)^{-1} A_{1}^{\top}\right\rceil y\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left\lvert\, \begin{array}{cc}
I^{-} & \left(A_{1}^{\top} A_{1}\right)^{-1} A_{1}^{\top} A_{2} \\
0 & 0
\end{array}\right.\right) \left.\frac{x_{1}}{{ }^{3}} \right\rvert\,
\end{aligned}
$$

