Estimation \&่ LEAST Squares:
Plan:

- THIS WEEK: LEAST SQuARES
- LEAST SQuARES \& Probability
- kalgan filter:

Notation:
stabe/paraucters
x : true state (unknown) (parameters)
\tilde{x} : measwed (known) state
\hat{x} : $\underset{\substack{\text { eStimated } \\ \text { state }}}{ }$ (compute) state
noise terms
v : measurement noise \sim distribution "noise in the sensor"
ω. process noise
"noise in the mode" \sim distribution

- ina curate molding
- dynamic noise
e : residual error
$e=\tilde{x}-\hat{x}$
stale meas. Us. current estimate

LEAST SQUARES:
MODEL, $y(t)=\sum_{i=1}^{n} x_{i} h_{i}^{L}(t) \longrightarrow h_{i}:$ Gasisfunction output Tparmeters $h_{i}(t)$: something we can compute.

- take a sequence of measwements $(y(t))$
- use to fit the parameters x_{i}

Real World:

Measwe:
\tilde{y} : outputs we measure
H: data compute
V : noise
x : true parameter to estimate
linear in x but not necessarily in in t

$$
\begin{aligned}
& E x: y(t)=\overline{\left|a_{1}\right| \cos (t)+\overline{a_{2}} \sin (t)} \leftarrow \\
& x=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad H=\left[\begin{array}{c}
\cos \left(t_{1}\right) \sin \left(t_{1}\right) \\
\cos \left(t_{2}\right) \sin \left(t_{2}\right) \\
\vdots
\end{array}\right] \begin{array}{l}
\text { BASIS FNCS } \\
h_{1}(t)=\cos (t) \\
h_{2}(t)=\sin (t)
\end{array}
\end{aligned}
$$

Ex.

$$
y(t)=\alpha_{n} t^{n}+\alpha_{n-1} t^{n-1}+\cdots+\alpha_{1} t+\alpha_{0}
$$

$$
x=\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{n}
\end{array}\right] \quad H=\left[\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{L}^{n} \\
1 & t_{2} & t_{2}^{2} & \cdots & t_{2}^{n} \\
& \vdots &
\end{array}\right] \begin{gathered}
\frac{B A \operatorname{Asis}}{} \\
n_{1}(t)=1 \\
u_{2}(t)=t \\
u_{3}(t)=t^{2} \\
\vdots
\end{gathered}
$$

curve fitting: different basis functions linear reg.

ALSO LINEAR REG

more parameters \rightarrow requires mare ${ }^{7}$
(More chefs:) locked data
Ex. $\quad \therefore$ O $_{y(5)}$ locked 4 data points trying to fit
 ing $y(t)=\alpha_{3}$

$$
\rightarrow y=H x \leftarrow
$$

$$
H=\left[\begin{array}{cccc}
1 & t_{1} & t_{1}^{2} & t_{1}^{3} \\
1 & \vdots & \vdots \\
1 & t_{4} & t_{4}^{2} & t_{4}^{3}
\end{array}\right]
$$

$$
\Rightarrow x=H^{-1} y \cdot B A D
$$

any noise in am individual meas. \rightarrow bigimpact
NOTE: x is constant in time. values of basis functions change in "time"
if x is changing \bar{w} time:
\rightarrow need measurements to come much faster than changes in $x \ldots$
\rightarrow treating x as constant over a shat time interval.
OR. try to predict how x is changing
model the dynamics x.
compare $y \bar{w}$ what we expect x to be...

KALMAR FILTER
SOLVING: (dynamics: Linear)
—— $\mathbb{R}^{n} \mathbb{R}^{n \times 1} \mathbb{R}^{n}$
MODEL: $y^{j}=H x \Leftarrow$
Measwe: $\tilde{y}=H x+V \Rightarrow \tilde{y} \notin B(H)$
if we try to solve $\tilde{y}=H \underline{x} \Longrightarrow$ notion
no noise.., $\tilde{y}=H x$ Ital
\tilde{y} most lively not (no solution)
in range of H

$$
\begin{aligned}
& y=H x \\
& \begin{array}{ll}
H \text { tall } & H=H x
\end{array} \quad y=\begin{array}{l}
H x \\
i
\end{array}
\end{aligned}
$$

try to find x. that assumes noise has as little impact as possible find x.
solving:

$$
\begin{aligned}
& \min _{x}(\tilde{y}-H x)^{\top}(\underline{y}-H x)=J(x) \\
& \frac{\partial J}{\partial x}=0: \\
& \frac{\partial}{\partial x}\left(\tilde{y}^{\top} \tilde{y}-2 \tilde{y}^{\top} H x+x^{\top} H^{\top} H x\right) \\
& -2 \tilde{y}^{\top} H+2 x^{\top} H^{\top} H=0
\end{aligned}
$$

or use chain rule...

$$
\begin{aligned}
\frac{\partial J}{\partial x}=\left.\frac{\partial J}{\partial z}\right|_{z=y^{-}-H x} \frac{\partial z}{\partial x} & =\frac{2 z^{\top}}{\frac{\partial J}{\partial z}} \frac{(-H)}{\frac{\partial z}{\partial x}} \\
& =2(\tilde{y}-H x)^{\top}(-H) \quad \text { when } z=\tilde{y}-H x \\
& =-2 \tilde{y}^{\top} H+2 x^{\top} H^{\top} H=0
\end{aligned}
$$

$x^{\top}=\tilde{y}^{\top} H\left(H^{\top} H\right)^{-1} \quad \hat{\Lambda}_{H} \quad \frac{\left(H^{\top} H\right)^{-1}}{\text { is full col rank. }}$
$x=\left(H^{\top} H\right)^{-1} H^{\top} \tilde{y} \Leftarrow \begin{gathered}\text { Least squares } \\ \text { solution }\end{gathered}$
$\begin{array}{llll} & \text { Ex. } & \tilde{y}=H x & H \in \mathbb{R}^{3 \times 2} \\ \underline{y} & \alpha_{n} s^{n}+\cdots & \alpha_{1} s+\alpha_{0} d_{1} \\ & H=\left|H_{1} H_{2}\right| & \alpha_{n}^{\prime} s^{n} & +\alpha_{0}^{1}\end{array}$

if x is the least squares solution:
$H x$ is projection of \tilde{y} ant the range of H

