Prisoner's Dilemma

 Two prisoners have to decide to confess or not.

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year.
 reward = (0,0)

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year.
 reward = (0,0)
- If they both confess, they go to prisoner for two years.
 reward = (-1,-1)

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year.
 reward = (0,0)
- If they both confess, they go to prisoner for two years.
 reward = (-1,-1)
- If only one of them,
 confesses, that one goes
 free and the other goes to
 jail for 3 years.
 ex. reward = (+1, -3)

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year. reward = (0,0)
- If they both confess, they go to prisoner for two years.
 reward = (-1,-1)
- If only one of them,
 confesses, that one goes
 free and the other goes to
 jail for 3 years.
 ex. reward = (+1, -3)
- What will they do?

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year.
 reward = (0,0)
- If they both confess, they go to prisoner for two years.
 reward = (-1,-1)
- If only one of them, confesses, that one goes free and the other goes to jail for 3 years.
 ex. reward = (+1, -3)
- What will they do?

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year. reward = (0,0)
- If they both confess, they go to prisoner for two years.
 reward = (-1,-1)
- If only one of them, confesses, that one goes free and the other goes to jail for 3 years. ex. reward = (+1, -3)
- What will they do?

Possible Payoffs from Mixed Strategies

Matrix Game: Prisoner's Dilemma - Best Responses

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year. reward = (0,0)
- If they both confess, they go to prisoner for two years.
 reward = (-1,-1)
- If only one of them, confesses, that one goes free and the other goes to jail for 3 years.

 ex. reward = (+1, -3)
- What will they do?

Best Responses for Blue Player...

Matrix Game: Prisoner's Dilemma - Best Responses

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year. reward = (0,0)
- If they both confess, they go to prisoner for two years.
 reward = (-1,-1)
- If only one of them, confesses, that one goes free and the other goes to jail for 3 years.

 ex. reward = (+1, -3)
- What will they do?

Best Responses for Red Player...

Matrix Game: Prisoner's Dilemma - Nash Equilibrium

- Two prisoners have to decide to confess or not.
- If they both stay silent, they go to prison for a year. reward = (0,0)
- If they both confess, they go to prisoner for two years.
 reward = (-1,-1)
- If only one of them, confesses, that one goes free and the other goes to jail for 3 years. ex. reward = (+1, -3)
- What will they do?

Nash must be best response for both

Nash = they both confess!

 What happens if agents consider some portion of their opponent's outcome?

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_{i} = (1 - \theta_{i})J_{i} + \theta_{i}J_{-i}$$

$$\theta_{i} \in [0, 1]$$

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_{i} = (1 - \theta_{i})J_{i} + \theta_{i}J_{-i}$$

$$\theta_{i} \in [0, 1]$$

- Fully Selfish: $\theta_i=0$
- Fully Selfless $\; \theta_i = 1 \;$

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_{i} = (1 - \theta_{i})J_{i} + \theta_{i}J_{-i}$$

$$\theta_{i} \in [0, 1]$$

- $\theta_i = 0$ Fully Selfish:
- Fully Selfless $\; \theta_i = 1 \;$

 $heta_2$

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_{i} = (1 - \theta_{i})J_{i} + \theta_{i}J_{-i}$$

$$\theta_{i} \in [0, 1]$$

- Fully Selfish: $\theta_i=0$
- Fully Selfless $\; \theta_i = 1 \;$

 θ_2

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_{i} = (1 - \theta_{i})J_{i} + \theta_{i}J_{-i}$$

$$\theta_{i} \in [0, 1]$$

- Fully Selfish: $\theta_i=0$
- Fully Selfless $\; \theta_i = 1 \;$

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_i = (1 - \theta_i)J_i + \theta_i J_{-i}$$

$$\theta_i \in [0, 1]$$

- Fully Selfish: $\theta_i=0$
- Fully Selfless $\; \theta_i = 1 \;$

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_{i} = (1 - \theta_{i})J_{i} + \theta_{i}J_{-i}$$

$$\theta_{i} \in [0, 1]$$

- Fully Selfish: $\theta_i=0$
- Fully Selfless $\theta_i=1$

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_{i} = (1 - \theta_{i})J_{i} + \theta_{i}J_{-i}$$

$$\theta_{i} \in [0, 1]$$

- $\theta_i = 0$ Fully Selfish:
- Fully Selfless $\; \theta_i = 1 \;$

- What happens if agents consider some portion of their opponent's outcome?
- Social Value Orientation (SVO)

$$\mathbf{J}_{i} = (1 - \theta_{i})J_{i} + \theta_{i}J_{-i}$$

$$\theta_{i} \in [0, 1]$$

- Fully Selfish: $\theta_i=0$
- Fully Selfless $\; \theta_i = 1 \;$

 θ_1

become more

become more

Matrix Game: Prisoner's Dilemma - SVO Nash Structure

"Prisoner's dilemma morphs into other well-known game types as the players' SVO change."

Matrix Game: Prisoner's Dilemma - SVO Nash Structure

"Prisoner's dilemma morphs into other well-known game types as the players' SVO change."

Prisoner's Dilemma

 Two drivers dare each other to flinch to avoid a head on collision

- Two drivers dare each other to flinch to avoid a head on collision
- If neither flinches, they crash into each other. reward = (-3,-3)

- Two drivers dare each other to flinch to avoid a head on collision
- If neither flinches, they crash into each other. reward = (-3,-3)
- If they both flinch, no one wins. reward = (0,0)

- Two drivers dare each other to flinch to avoid a head on collision
- If neither flinches, they crash into each other. reward = (-3,-3)
- If they both flinch, no one wins. reward = (0,0)
- If only one flinches, the other wins the dare.
 ex. reward = (+1,-1)

- Two drivers dare each other to flinch to avoid a head on collision
- If neither flinches, they crash into each other. reward = (-3,-3)
- If they both flinch, no one wins. reward = (0,0)
- If only one flinches, the other wins the dare.
 ex. reward = (+1,-1)
- What will they do?

Matrix Game: Chicken - Best Responses

Matrix Game: Chicken - Best Responses

- Two drivers dare each other to flinch to avoid a head on collision
- If neither flinches, they crash into each other. reward = (-3,-3)
- If they both flinch, no one wins. reward = (0,0)
- If only one flinches, the other wins the dare.
 ex. reward = (+1,-1)
- What will they do?

