
Univ. of Washington

Lecture : Linear & Convex Combinations

Lecturer: Dan Calderone

Linear Combinations
A linear combination of a set of vectors

{
A1, . . . , An

}
is weighted sum of those vectors

A1x1 + A2x2 + · · ·+ Anxn

where the weights or coefficients are scalars x1, . . . , xn ∈ R. Basic linear combinations of one,
two, three, and four vectors are shown below.

Span
The set of all possible linear combinations is called the span of a set of vectors. Spans of one,two,
and three vectors are shown in the image below. Note that spatially The span of a set of vectors
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forms a hyperplane or subspace that passes through the origin and extends out in any directions
the vectors point. Since negative coefficients are possible the span also extends in the opposite
direction of the vectors. If we add a new vector to the set of vectors that does not already lie in the
span of the original vectors then we increase the dimension of the spanned subspace. If we add a
new vector that was already in the span, the dimension of the spanned subspace does not increase

Linear Dependence
We say a vector is linearly dependent on a set of vectors if it lies in the span of those vectors,
ie. one can construct that vector as a linear combination of vectors in the set. Algebraically, y is
linearly dependent on a set of vectors

{
A1, . . . , An

}
, we can find coefficients x1, . . . , xn ∈ R such

that
y = A1x1 + · · ·+ Anxn

If a vector is not linearly dependent on a set of vectors, we say it is linearly independent from that
set. We say a set of vectors is linearly independent if none of the vectors are linearly dependent on
the other vectors in the set, and we say the set is linear dependent if any of the vectors are linearly
dependent on the others. The image below shows the case where a vector A3 is linearly dependent
on vectors A1, A2 ∈ R3.
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More Math: Rigorous Definitions

This next section discusses linear dependence and independence in rigorous mathematical terms.
A student of linear algebra will quickly note that understanding/working with these definitions can
actually be a lot more difficult than understanding the concepts given above. While one should
not shy away from the rigorous math, one should also keep in mind the simple intuition for the
concepts given above.

A compact way to state mathematically that a set of vectors
{
A1, . . . , An

}
is linearly dependent

is to say, there exists a vector of coefficients x ̸= 0 such that

A1x1 + · · ·+ Anxn = 0

This statement encodes that there is at least one vector Ai that is dependent on the others. Here,
x ̸= 0 means that at least one of the coefficients is not equal to 0. Since at least one xi is nonzero
(assume it is i = 1 for simplicity), we can write

A1x1 = −A2x2 − · · · − Anxn

We can then explicitly write A1 as a linear combination of the others

A1 = A2

(
−x2

x1

)
+ · · ·+ An

(
−xn

x1

)
Note: if all the other xi’s are zero, then A1 must be the zero vector which is linear dependent
on any set of vectors. Negating the above statement gives a mathematical definition of linear
independence. A set of vectors

{
A1, . . . , An

}
is linearly independent if there does not exist a

nonzero vector x such that A1x1 + · · ·+ Anxn = 0. We can rephrase this in several ways: a set is
linearly independent if A1x1 + · · ·+Anxn = 0 only when x = 0 or a set of vectors

{
A1, . . . , An

}
is linearly independent if

A1x1 + · · ·+ Anxn = 0 ⇒ x = 0

This last characterization is by far the most useful in mathematical proofs. If we can show that the
sum condition on the left implies x = 0 then we know the set of vectors is linearly independent.

More Math: Proving Linear Independence (Difficulty: 3/10)

These next comments assume an understanding of matrix multiplication and matrix column geom-
etry.

Practically when we try to prove linear independence (or dependence) of a set of vectors (say
n vectors each in Rm), we often write them as columns of a matrix A ∈ Rm×n and write vector
of coefficients as x ∈ Rn. The linear dependence condition becomes there exist x ̸= 0 such
that Ax = 0, ie. A has a nontrivial right nullspace. The linear independence condition becomes
Ax = 0 ⇒ x = 0. This is quite compact and useful. For example, suppose A can be divided into
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rows A′ and A′′ where we already know that A′ has linearly independent columns. We can then
show immediately that A must have linearly independent columns as well

Ax =

[
A′

A′′

]
x =

[
A′x
A′′x

]
=

[
0
0

]
Since A′x = 0 then x = 0 (by the linear independence of the columns of A′) and thus we have
shown that Ax = 0 implies x = 0 as desired. This often arises in the even simpler context where
A′ is just the identity matrix. In this case we simply have

Ax =

[
I
A′′

]
x =

[
x

A′′x

]
=

[
0
0

]
⇒ x = 0

We will return to this construction in our construction of bases for range and nullspaces.

Convex Combinations
One specific type of linear combination that often arises is a convex combination A convex com-
bination of vectors is formed when we require the coefficients of a linear combination to all be
positive and sum to one, ie.

A1x1 + A2x2 + · · ·+ Anxn, with
∑
i

xi = 1, xi ≥ 0

Note that we also write this constraint in more compact notation as 1Tx = 1, x ≥ 0 or even more
simply as x ∈ ∆n where ∆n is the nD simplex. Visually, a convex combination of vectors live in
the space between the vectors or the convex hull. For any two vectors A1 and A2, A1

1
2
+ A2

1
2

is
the vector halfway between the two vectors; for n vectors

∑
i Ai

1
n

is the center of the set of vectors
("average" vector of the set); etc. Different convex combinations of vectors

{
A1, A2, A3

}
∈ R3

are illustrated in the figures below.

4



We can also show convex combinations of two, three, four, and five vectors.

A convex combination between just two vectors is often written in the form

y = A1(1− α) + A2α

with 0 ≤ α ≤ 1. We notice that if we start out with α = 0, y = A1. We note that we can rearrange
the above expression to show explicitly how y changes with α

y = A1 + (A2 − A1)α

As αmovesfrom0to1, y starts at A1 and then adds back little bits of the difference from A1 to A2

until y reaches A2. This perspective is illustrated in the figure below.
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Keeping α between 0 and 1 keeps y on the segment between A1 and A2. If we relax this
condition and allow α to be negative or greater than 1, we trace out a whole line that runs through
A1 and A2. α < 0 extends past A1; α > 1 extends off past A2.

Note that here x1 = (1 − α) and x2 = α. Removing the restriction on α is equivalent to
removing the restriction that x1 ≥ 0 and x2 ≥ 0. By construction, we still have x1 + x2 =
(1− α) + α = 1

Note that this extension to the line through A1 and A2 applies to larger numbers of vectors as
well. For example for three vectors

{
A1, A2, A3

}
, removing the restriction that x ≥ 0 expands the

convex set to the plane shown below. Note the signs of x1,x2, and x3 in each part of the plane.
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More Drawing: Is a Point Inside a Triangle? (Difficulty: 3/10)

The above construction can be quite useful for determining quickly if a point is inside a triangle,
tetrahedron, or hyper-tetrahedron. (This has many applications. For example it is a critical step
in the implementation of the quickhull algorithm for computing convex hulls of points.) We focus
on the case of three points in 2D, ie. determining if a point is inside a triangle. To determine if a
point y ∈ R2 is inside a triangle formed by points

{
A1, A2, A3

}
⊂ R2, we can form the following

system of equations

[
y
1

]
=


| | |
A1 A2 A3

| | |
− 1T −


︸ ︷︷ ︸

M

x1

x2

x3

 =

A11 A12 A13

A21 A22 A23

1 1 1


︸ ︷︷ ︸

M

x1

x2

x3



The last row this system of equations requires x to sum to 1, ie. x generates linear combinations
in the plane shown in the figure above. The first two rows then say that y is a linear combination
of the Ai vectors. Note assuming this system is invertible, we can compute x = M−1y. After
computing x one can immediately read off which section of the plane y is in based on the signs of
the elements of x. If x ≥ 0, then y is in the triangle. For fast implementation a 3× 3 matrix M can
be inverted explicitly (see inverse formulas).

Note: this system will always be invertible unless the triangle shown above collapse to a line
and the problem is ill-posed. One could still actually take the pseudo-inverse which would de-
termine if the projection of y onto that line was inside the convex combination of the points. (I
think.)

For tetrahedrons or hyper-tetrahedrons in nD, this formula extends to checking if y ∈ Rn is a
convex combination of n+ 1 points

{
A1, . . . , An+1

}
. The equation then becomes

[
y
1

]
=


| |
A1 · · · An+1

| |
− 1T −


︸ ︷︷ ︸

M

 x1
...

xn+1



Taking x = M−1y, one can similarly check that x ≥ 0.

More Math: Coordinate Transformations on Convex Hulls (Difficulty: 4/10)

When we’re working with a convex hull of a set of points, we may often want to write different
coordinate systems based on those points. We list several useful coordinate transformations be-
low along with explicit representations of their inverses, diagrams, and intuitive explanations. Of
course, other useful transformations are possible. We write the formulas for points in Rn, but we
draw figures for points in R3 and R4. The convex hull for 3 points in R3 is a triangle; for 4 points
in R4 the convex hull is a 3D tetrahedron which can visualized. The first n− 1 coordinates in our
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tranformations will line up explicitly with each convex hull. The last coordinate will be related to
the vector 1.
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