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1 Symmetric Matrices

1.1 Symmetric and Hermitian Matrices
A symmetric matrix is a real matrix S ∈ Rn×n such that S = ST . A Hermitian matrix H ∈ Cn×n is
a matrix such that H = H∗. Symmetric matrices have all real eigenvalues and can be diagonalized
by rotation matrices, ie. for every symmetric matrix S, there exists a rotation matrix R and a
diagonal matrix of real eigenvalues D such that

S = RDRT =

 | |
r1 · · · rn
| |


λ1 0

... . . . ...
0 λn


− rT1 −

...
− rTn −

 (1)

This means that multiplying by an n×n symmetric matrix corresponds to stretching in n orthogonal
coordinate directions. Symmetric matrices can be thought of as defining level sets of the quadratic
form h(x) = 1

2
xTSx. The vector field ẋ = Sx is then a gradient field, ẋ = ∂h

∂x

T . Intuitively,
ẋ = Sx can be thought of as flowing up a surface defined by h(x). This is also called a conservative
vector field in physics and the function h(x) is typically related to the energy of a system (or some
analog). The general condition for a nonlinear vector field ẋ = f(x) to be conservative, ie. that
f(x) = ∂h

∂x

T for some h(x) is given by ∂fi
∂xj

=
∂fj
∂xi

for all i, j. This condition is derived from the

fact that if such and h(x) exists, then ∂2h
∂xi∂xj

= ∂2h
∂xj∂xi

.
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1.2 Positive Definiteness
We say a symmetric matrix S is positive definite if

xTSx > 0, for all x ∈ Rn (2)

Since we could pick x to be any ri, it follows that for a positive definite matrix, λi > 0 for all i. If
the "greater than" signs above are replaced with "greater than or equal" signs, ie. ">" is replaced
with "≥" then we say the matrix is positive semi-definite. Similarly, if we replace the "greater than"
signs with "less than" signs we say that the matrix is negative definite or negative semi-definite.

1.3 Polar Decomposition

For any matrix A ∈ Rm×n, there are two positive semi-definite matrices P = (ATA)
1
2 and P ′ =

(AAT )
1
2 (where the positive square root of each eigenvalue is taken) that are closely related to

the "shape" of the matrix A. Similarly to how the magnitude of a complex number is defined by

|z| =
√
z∗z, we can say that the "magnitude and shape" of A is defined either by (ATA)

1
2 or

(AAT )
1
2 . Expanding out ATA, we get

ATA =

− AT
1 −
...

− AT
n −


 | |
A1 · · · An

| |



=

A
T
1A1 · · · AT

1An
...

...
AT

nA1 · · · AT
nAn

 =

|A1||A1| cos(θ11) · · · |A1||An| cos(θ1n)
...

...
|An||A1| cos(θn1) · · · |An||An| cos(θnn)


We note that this matrix is fully determined by the size and relative orientation of the columns of
A. Another way to say this is that applying an orthonormal transformation to all the columns of A
does not change ATA. Indeed (RA)T (RA) = ATRTRA = ATA. Similarly the size and relative
orientation of the rows of A full determines AAT . We can make precise the sense in which A has

the same shape as P = (ATA)
1
2 by noting that P and A differ by a orthonormal transformation.

Indeed,

A = A(ATA)−
1
2︸ ︷︷ ︸

R

(ATA)
1
2︸ ︷︷ ︸

P

We note that we can check that RTR = I

RTR = (ATA)−
1
2ATA(ATA)−

1
2

= (ATA)−
1
2 (ATA)

1
2︸ ︷︷ ︸

I

(ATA)
1
2 (ATA)−

1
2︸ ︷︷ ︸

I

= I
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and thus we have that rotating (and possibly reflecting) all the columns of the positive semidefinite
matrix P ⪰ 0 by one rotation gives A. Similarly a complex number z = |z|eiθ can be created
by starting with it’s norm |z| ≥ 0 and rotating it in the complex plane by eiθ. Similarly A can be

created from (AAT )
1
2 by applying the orthonormal transformation R′ = (AAT )−

1
2A.

A = (AAT )
1
2︸ ︷︷ ︸

P ′

(AAT )−
1
2A︸ ︷︷ ︸

R′

One can check that in fact for a square matrix, R = R′.
This leads us to the polar decomposition. A square, invertible A ∈ Rn×n can be written in a

polar form similar to the polar decomposition of a complex number z =
√
z∗zeiθ. The

A = RP = P ′R

where

P = (A∗A)
1
2 = V ΣV ∗

P = (AA∗)
1
2 = UΣU∗

R = (AA∗)
−1
2 A = A(A∗A)

−1
2 = UV ∗

Note that P ⪰ 0 and P ′ ⪰ 0. Note also the There are two separate versions of the polar decom-
position one with P and one with P ′. Note also the connections between the polar decomposition
and the singular value decomposition (see below). These relationships can be checked directly.

2 Singular Value Decomposition
The singular value decomposition (SVD) provides even more insight beyond the polar decompo-
sition. The SVD is very general and can apply to any matrix A ∈ Cm×n even if the matrix is
not-invertible, not diagonalizable, or even not square or full-rank. As a result, it is an often used,
powerful analysis tool. We will perform the derivation below for A ∈ Rm×n but we note that the
same derivation works for complex matrices using conjugate transposes.

To construct the SVD, we will assume that A is fat or square and analyze ATA. (A similar
construction can be done if A is tall using AAT .). We first diagonalize ATA as

ATA = V DV T

where V ∈ Rn×n is orthonormal, ie. V TV = I , and D ⪰ 0 is diagonal, real and positive semi-
definite. We know this is possible since ATA is symmetric and thus has all real eigenvalues and
orthogonal eigenvectors. We will also assume that the diagonal of D is arranged in descending
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order from the largest eigenvalue to the smallest. Since A is fat or square, some portion of the
diagonal of D will be 0’s. We can take the positive square root of D to get

D
1
2 =

[
Σ 0
0 0

]
where

Σ =

σ1 · · · 0
...

...
0 · · · σk


and the block zeros have the appropriate sizes. {σi}ki=1 are called singular values and are the
positive square roots of the nonzero eigenvalues of ATA. We can enumerate V as

V =
[
V 1 V 2

]
where

V 1 =

 | |
V1 · · · Vk

| |

 , V 2 =

 | |
Vk+1 · · · Vn

| |


where the columns of V 1 correspond to positive, non-zero singular values and the columns of V 2

are the eigenvectors for the zero eigenvalues of ATA. We note that the columns of V 2 can be chosen
somewhat arbitrarily as long as they are orthonormal and span N (ATA). Since N (ATA) = N (A),
R(V 2) ∈ N (A) as well.

We note that any columns corresponding to repeated eigenvalues of ATA (including repeated
zeros), may be arbitrarily chosen (as long as they are orthonormal). We can now define a matrix
U ∈ Rm×m as

U =
[
U1 U2

]
where

U1 =

 | |
U1 · · · Uk

| |

 =

 | |
AV1

σ1
· · · AVk

σk

| |

 U2 =

 | |
Uk+1 · · · Um

| |


Note that the columns of U1 are orthonormal.

V T
i AT

σi

AVi

σi
=

σ2
i

σ2
i
V T
i Vi = 1,

V T
i AT

σi

AVj

σj
=

σ2
i

σ2
j
V T
i Vj = 0

The columns of U2 can be chosen to complete an orthonormal basis for Rm and thus UTU = I .
We can then write

U1Σ = AV 1
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By adding (0)U2 to the left-hand side, and since V 2 ∈ N (A), we can write[
U1Σ + (0)U2 0

]
= A

[
V 1V 2

]
[
U1 U2

] [Σ 0
0 0

]
= A

[
V 1V 2

]
right multiplying by V T gives

A = U

[
Σ 0
0 0

]
V T

=
[
U1 U2

] [Σ 0
0 0

] [
V 1T

V 2T

]
This is the singular value decomposition. Note the following relationships

R(U1) = R(A), R(V 1) = R(AT )

R(U2) = N (AT ), R(V 2) = N (A)

Note also that the columns of U are orthonormal eigenvectors of AAT with the singular values
squared as eigenvalues. Indeed,

AATUi =
AATAVi

σi
=

σ2
i

σi
AVi = (σi)

2Ui

Thus this construction would have worked using AAT instead of ATA if desired.

2.1 Symmetric-Skew Symmetric/Helmholtz Decomposition
A square matrix A ∈ Rn×n can be decomposed as follows

A = 1
2

(
A+ AT

)
︸ ︷︷ ︸

S

+ 1
2

(
A− AT

)
︸ ︷︷ ︸

K

Note that S = ST is symmetric and K = −KT is skew-symmetric. This decomposition says that
the space of real matrices is actually the direct sum of the space of symmetric matrices and the
space of skew-symmetric matrices. Under the vectorized matrix inner product ⟨·, ·⟩ = Tr

(
(·)T (·)

)
,

we have that

⟨S,K⟩ = Tr(STK) =
∑
i,j

SijKij

=
∑
i<j

SijKij +
∑
i>j

SijKij +
∑
i

SiiKii

=
∑
i<j

SijKij +
∑
j>i

SjiKji +
∑
i

SiiKii

=
∑
i<j

Sij

(
Kij +Kji

)
+
∑
i

SiiKii = 0
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If the definition of positive definite is extended to non-symmetric matrices we have that

xTAx = xTSx+ xTKx = xTSx

and thus A is positive definite if and only if S = 1
2
(A + AT ) is positive definite. In the context of

vector fields, this means that any linear vector field ẋ = Ax can be decomposed into a conservative
piece and a rotational piece.

ẋ = Ax = Sx︸︷︷︸
conservative

+ Kx︸︷︷︸
rotational

which is a special application of the Helmholtz decomposition to linear vector fields.

3 Matrix vs. Complex Number Analogies
The polar decomposition and the symmetric/skew-symmetric decomposition provide several deep
analogies between matrices and complex numbers. Symmetric matrices act a lot like real num-
bers and positive definite symmetric matrices act like positive real numbers. Among other things,
they have real and positive real eigenvalues respectively. Skew-symmetric matrices act a lot like
purely imaginary numbers, encoding rotational flow and having purely imaginary eigenvalues. We
can even draw a “complex plane” of sorts for matrices with symmetric matrices as the real axis
and skew-symmetric matrices as the vertical axis. As shown above, the fact that these two sub-
spaces are orthogonal is accurate. The Cartesian description of complex numbers is analogous to
the symmetric-skew symmetric decomposition and the polar description of complex numbers is
analogous to the polar decomposition.

z = a+ bi, ⇒ A = S +K

z = |z|eiθ ⇒ A = RP = P ′R

This analogy extends in the following ways detailed in the diagram. For complex numbers and
square invertible matrices and

z = a+ bi = |z|eiθ, A = UΣV T

• z ⇒ A, z∗ ⇒ AT , z−1 ⇒ A−1, z−∗ ⇒ A−T

• a ⇒ S = 1
2
(A+ AT ), bi ⇒ K = 1

2
(A− AT ).

• |z| = (z∗z)
1
2 ⇒ P = (ATA)

1
2 = V ΣV T , P ′ = (AAT )

1
2 = UΣUT ,

• eiθ ⇒ R = A(ATA)−
1
2 = (AAT )−

1
2A = UV T , e−iθ ⇒ RT ,
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