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Vector Derivatives
Derivatives are linear maps that convert perturbations in function arguments into perturbations in
the function themselves. Consider x ∈ Rn and f : Rn → R. f(x) is a scalar. The derivative ∂f

∂x
is

the row vector
∂f

∂x
=

[
∂f
∂x1

· · · ∂f
∂xn

]
such that

∆f ≈ ∂f

∂x
∆x =

[
∂f
∂x1

· · · ∂f
∂xn

]∆x1
...

∆xn

 (1)

where ∆f ∈ R and ∆x ∈ Rn are perturbations in f and x, respectively. Note that if f is linear,
ie. f(x) = b⊤x, then ∂f

∂x
= b⊤. Note that the perturbation form in (1) can be useful in computing

vector derivatives in tricky situations. For example, suppose f(x) = x⊤Qx + b⊤x. In order to
compute the derivative, we can perturb each instance of x separately and add up the perturbations.
(The ability to perturb each instance of x separately is called the product rule.) Then we rearrange
the right hand side (RHS) into the form of (1).

∆f = ∆x⊤Qx+ x⊤Q∆x+ b⊤∆x (2)

Noticing that each of the terms in the RHS is a scalar, we can transpose as necessary.

∆f = (∆x⊤Qx)⊤ + x⊤Q∆x+ b⊤∆x (3)

=
(
x⊤(Q+Q⊤) + b⊤

)
∆x (4)

⇒ ∂f

∂x
= x⊤(Q+Q⊤) + b⊤ (5)

Now suppose f(x) is a vector valued function f : Rn → Rn. The derivative is now an m × n
matrix

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (6)
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such that

∆f =

∆f1
...

∆fm

 ≈ ∂f

∂x
∆x =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn


∆x1

...
∆xn

 (7)

where ∆f ∈ Rm and ∆x ∈ Rn. Note that when ∂f
∂x

is a matrix it is referred to as a Jacobian.
Now suppose we have a scalar function f(x) and we want to compute its second derivative.

Differentiating once gives

∂f

∂x
=

[
∂f
∂x1

· · · ∂f
∂xn

]
(8)

Now treating ∂f
∂x

as a vector valued function, we can compute the second derivative

∂2f

∂x2
=


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n

 (9)

The matrix ∂2f
∂x2 is symmetric since ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
and is referred to as the Hessian of the function

f(x). Second derivatives are used to approximate perturbations of first derivatives

∆
∂f

∂x
≈ ∆x⊤∂

2f

∂x2
=

∆x1
...

∆xn


⊤


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n

 (10)

For the quadratic function f(x) = x⊤Qx+b⊤x, we can use the perturbative perspective to compute

∆
∂f

∂x
= ∆x⊤∂

2f

∂x2
= ∆x⊤(Q+Q⊤) ⇒ ∂2f

∂x2 = Q+Q⊤ (11)

Note that often we write ∂2f
∂x2 = 2Q. This is consistent with above formula assuming that Q = Q⊤

is symmetric. Any time we consider a quadratic form x⊤Qx, we assume that Q is symmetric. The
reason for this is that if it’s not symmetric, only the symmetric part of it affects the product x⊤Qx.
Explicitly, write

x⊤Qx = x⊤
(

1
2

(
Q+Q⊤)+ 1

2

(
Q−Q⊤))x

= 1
2
x⊤(Q+Q⊤)x+ 1

2
x⊤(Q−Q⊤)x

= 1
2
x⊤(Q+Q⊤)x+ 1

2
x⊤Qx− 1

2
x⊤Q⊤x︸ ︷︷ ︸

=0
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The first part of the expansion is the symmetric part of Q. The second part is the skew symmetric
part and x⊤Kx = 0 for any K = −K⊤ (K is skew-symmetric).

Using this structure, we also comment on how to express a vector valued Taylor expansion. Up
to the quadratic term a Taylor expansion for f(x) around a point x0 is given by

f(x) = f(x0) +
∂f

∂x

∣∣∣∣
x0

∆x+∆x⊤∂
2f

∂x2

∣∣∣∣
x0

∆x+ · · · where ∆x = x− x0

Note how this relates to the perturbation analysis ideas discussed above.

Chain Rule
One important practical tool for taking vector derivatives is the chain rule. One of the reasons to
be careful about how we arrange vector derivatives, and particularly to write the derivative of a
function f : Rn → Rm as an m× n matrix ∂f

∂x
∈ Rm×n is so that it is easy to apply the chain rule

consistent with the rules of multiplication. Specifically, consider several functions

h(z) : Rq → Rm, g(y) : Rp → Rq, f(x) : Rn → Rp

The derivatives of each function are matrices

∂h

∂z
∈ Rm×q,

∂g

∂y
∈ Rq×p,

∂f

∂x
∈ Rp×n

Suppose these functions are now composed together u(x) = h
(
g
(
f(x)

))
. The derivative of u(x)

with respect to x can then be computed as

∂u

∂x
=

∂

∂x

(
h
(
g
(
f(x)

)))
=

[
∂h

∂z

] [
∂g

∂y

] [
∂f

∂x

]
Carefully note the order of the vector derivative matrices and also how the dimensions of each
matrix match up for the matrix multiplication to work. Note also how our perturbation analysis
goes through.

∆u =
∂u

∂x
∆x =

[
∂h

∂z

] [
∂g

∂y

] [
∂f

∂x

]
∆x︸ ︷︷ ︸

∆y︸ ︷︷ ︸
∆z

To be completely accurate we have to be careful to plug in the correct argument to each derivative
matrix and thus we should write

∂u

∂x
=

∂h

∂z

∣∣∣∣
g(h(x))

∂g

∂y

∣∣∣∣
f(x)

∂f

∂x

∣∣∣∣
x
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As an example consider the function u(x) = e−
1
2
y⊤Qy where y = Hx for y ∈ Rp and H ∈ Rp×n.

(This is essentially the equation for a slice of a multivariate Gaussian.). Here we can take

h(z) = ez, g(y) = −1
2
y⊤Qy, f(x) = Hx

with derivatives

∂h

∂z
= ez ∈ R1×1,

∂g

∂y
= −1

2
y⊤(Q+Q⊤) ∈ R1×p,

∂f

∂x
= H ∈ Rp×n

Plugging in y = Hx and z = −1
2
y⊤Qy gives

∂u

∂x
= −ez

∣∣∣
−1
2
x⊤H⊤QHx

1
2
y⊤(Q+Q⊤)

∣∣∣
Hx

H

= −1
2
e−

1
2
x⊤H⊤QHxx⊤H⊤ 1

2

(
Q+Q⊤)H

= −1
2
e−

1
2
x⊤H⊤QHxx⊤H⊤QH

where in the last line we’ve assumed Q is symmetric. Note carefully how all the dimensions work
out so that the above expression is consistent with the rules of matrix multiplication. Again, the
fact that the dimensions work out is not a fluke but rather because we were careful to be consistent
with our definition of derivatives and application of the chain rule.

Matrix Derivatives
We now consider taking derivatives of functions F (X) where either the input X or the output F
are matrices. The perturbation analysis from above works exactly the same, but these are generally
trickier to write down because they are usually higher (more than two) dimensional tensors. The
one exception which we will deal with first is when either X or F is simply a scalar.

We start with the case where X is a scalar, F : R → Rm×n. In this case, we will usually define

∂F

∂X
=


∂F11

∂X
· · · ∂F1n

∂X
...

...
∂Fm1

∂X
· · · ∂Fmn

∂X

 (12)

The perturbation analysis can then be written as

∆F ≈=
∂F

∂X
∆X =


∂F11

∂X
· · · ∂F1n

∂X
...

...
∂Fm1

∂X
· · · ∂Fmn

∂X

∆X

Each element of ∂F
∂X

is simply the scalar derivative of the corresponding element of F with respect
to X .

[
∂F
∂X

]
ij
=

∂Fij

∂X
.
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We now consider the case where F is a scalar and X is a matrix, F : Rm×n → R. In this case,

∂F

∂X
=


∂F

∂X11
· · · ∂F

∂Xij

...
...

∂F
∂Xm1

· · · ∂F
∂Xmn

 (13)

Note the similarities and differences with (12). The perturbation analysis will involve summing
over all elements of ∂F

∂X
. We could, for example, write

∆F =
∑
ij

∂F
∂Xij

∆Xij

However, in many practical problems, scalar functions of matrices are written in terms of quadratic
forms or trace operators such as F (X) = a⊤Xb with a ∈ Rm, b ∈ Rn or F (X) = Tr(C⊤X) with
C ∈ Rm×n. It is worth knowing how to deal with these cases specially. Our analysis will leverage
properties of the trace operator and Euclidean matrix inner product ⟨C,X⟩ = Tr(C⊤X).

Paralleling the notation of a vector dot product, the basic inner product on the space of matrices
is

⟨Y,X⟩ =
∑
ij

YijXij = Tr(Y ⊤X)

Here we simply match up the corresponding elements of Y and X and sum over them. One can
check that the final expression Tr(Y ⊤X) does exactly this. (In practice, one would not compute
the full product Y ⊤X in order to calculate this inner product cause only the diagonal is needed,
but it is quite useful for analytic purposes.). Using this inner product idea, we can rewrite our
perturbation analysis as

∆F =
∑
ij

∂F
∂Xij

∆Xij =

〈
∂F

∂X
,∆X

〉
= Tr

(
∂F

∂X

⊤
∆X

)
(14)

Again, this can be a useful way to think of ∂F
∂X

, it is the matrix object that if we take the matrix inner
product of it with a perturbation ∆X then we get the perturbation in F , ∆F . The trace expression
can also be quite useful because it is often easy to write our function F (X) in a form that looks
like the far RHS of (14). We give several examples. The function F (X) = Tr(C⊤X) is in this
form already and we immediately have that

F (X) = Tr(C⊤X) =⇒ ∂F

∂X
= C

The function F (X) = a⊤Xb is a little trickier, but since it is a scalar value we can put it inside
a trace operator without changing it, ie. F (X) = Tr(F (X)) = Tr(a⊤Xb). (This is always possible
for any scalar function F ). We can then leverage the cyclic property of traces.

Tr(ABCD) = Tr(DABC) = Tr(CDAB) = Tr(BCDA)
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assuming that ABC was square in the first place. (It is worth playing around with this formula
and convincing yourself that is true as well as seeing how the dimensions of A,B,C,D come into
play. The only requirement for this to work is that ABCD is square (and that the dimensions of
A,B,C,D are compatible for the original multiplication.) For this reason, trace algebra is actually
quite pleasant because you can change the order of matrices in a product (which is not possible
when the product is not inside a trace). Returning to our original formula we can write

F (X) = a⊤Xb = Tr(a⊤Xb) = Tr(ba⊤X) =⇒ ∂F

∂X
= ab⊤

Similarly for F (X) = Tr
(
AXB), we can write

F (X) = Tr(AXB) = Tr(BAX) =⇒ ∂F

∂X
= A⊤B⊤

In any practical setting where one is taking derivatives with respect to matrices, being able to
use these algebraic tricks involving traces is crucial. Trying to compute out each element of (13)
individually and then organize them back into a usable expression is not doable.

We now give a more complicated example both for practice and also to illustrate a practical
method for computing derivatives that is widely applicable and quite powerful in many cases.
Often the best way to compute a derivative is to do a perturbation analysis, cancel zero-order
and higher-order terms, and then read off the derivative from this expansion. Practically speaking
for difficult matrix or vector derivatives this can be a quite powerful technique. To illustrate this
procedure, we will do it on the function

F (X) = a⊤X⊤(A+XB)−1Xb

where X ∈ Rm×n, A ∈ Rm×m, B ∈ Rn×m, and a, b ∈ Rm. We start by plugging in X + ∆X in
for X in the above expression.

F (X +∆X) = a⊤(X +∆X)⊤(A+ (X +∆X)B)−1(X +∆X)b

Using the Woodbury matrix identity, we get

F (X +∆X) = a⊤
(
X +∆X

)⊤

·
((

A+XB
)−1 −

(
A+XB

)−1
∆X(I +B

(
A+XB

)−1
∆X)−1B

(
A+XB

)−1
)

·
(
X +∆X

)
b
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and then expanding again gives

F (X +∆X) = a⊤X⊤(A+XB
)−1

Xb

+ a⊤∆X⊤(A+XB
)−1

Xb

− a⊤X⊤(A+XB
)−1

∆X(I +B
(
A+XB

)−1
∆X)−1B

(
A+XB

)−1
Xb

− a⊤∆X⊤(A+XB
)−1

∆X(I +B
(
A+XB

)−1
∆X)−1B

(
A+XB

)−1
Xb

+ a⊤X⊤(A+XB
)−1

∆Xb

+ a⊤∆X⊤(A+XB
)−1

∆Xb

− a⊤X⊤(A+XB
)−1

∆X(I +B
(
A+XB

)−1
∆X)−1B

(
A+XB

)−1
∆Xb

− a⊤∆X⊤(A+XB
)−1

∆X(I +B
(
A+XB

)−1
∆X)−1B

(
A+XB

)−1
∆Xb

We now want to isolate the first order perturbation terms. First, we use the fact that F (X) =
a⊤X⊤(A+XB)−1Xb and that (I +B(A+XB)−1∆X) → I as ||∆X||2 → 0. Plugging these in
and reorganizing gives

F +∆F ≈ F (X) (zero-order)

+ a⊤∆X⊤(A+XB
)−1

Xb (first-order)

+ a⊤X⊤(A+XB
)−1

∆Xb

− a⊤X⊤(A+XB
)−1

∆XB
(
A+XB

)−1
Xb

− a⊤∆X⊤(A+XB
)−1

∆XB
(
A+XB

)−1
Xb (second-order)

+ a⊤∆X⊤(A+XB
)−1

∆Xb

− a⊤X⊤(A+XB
)−1

∆XB
(
A+XB

)−1
∆Xb

− a⊤∆X⊤(A+XB
)−1

∆XB
(
A+XB

)−1
∆Xb (third-order)

Canceling the zero-order, second-order, and third-order terms leaves the first order terms.

∆F ≈ a⊤∆X⊤(A+XB
)−1

Xb

+ a⊤X⊤(A+XB
)−1

∆Xb

− a⊤X⊤(A+XB
)−1

∆XB
(
A+XB

)−1
Xb

We now want to rearrange this equation into a form where we can read off the derivative. Since
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these terms are scalars, we can transposes, apply traces, and rearrange terms to get

∆F ≈ Tr
(
a⊤∆X⊤(A+XB

)−1
Xb

+ a⊤X⊤(A+XB
)−1

∆Xb− a⊤X⊤(A+XB
)−1

∆XB
(
A+XB

)−1
Xb

)
≈ Tr

((
ab⊤X⊤(A+XB

)−⊤
+ ba⊤X⊤(A+XB

)−1

−B
(
A+XB

)−1
Xba⊤X⊤(A+XB

)−1
)
∆X

)
Using the equation ∆F = Tr

(
∂F
∂X

⊤
∆X

)
, we have that

∂F

∂X

⊤
= ab⊤X⊤(A+XB

)−⊤
+ ba⊤X⊤(A+XB

)−1 −B
(
A+XB

)−1
Xba⊤X⊤(A+XB

)−1

∂F

∂X
=

(
A+XB

)−1
Xba⊤ +

(
A+XB

)−⊤
Xab⊤ −

(
A+XB

)−⊤
Xab⊤X⊤(A+XB

)−⊤
B⊤
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