Homework 1

<u>Due Date</u>: Sunday, Oct 11^{th} , 2020 at 11:59 pm

1. Inner Products

- (a) (PTS: 0-2) Prove $y^T x = |x||y| \cos \theta$ using the definition of the 2-norm and the law of cosines.
- (b) (PTS: 0-2) Prove the parallelogram law:

$$|x+y|^2 + |x-y|^2 = 2|x|^2 + 2|y|^2$$

2. Fourier Bases

The Fourier basis functions are given by

$$\left\{\sqrt{2}\sin\left(2\pi nt\right) \mid n \in \mathbb{N}\right\} \cup \left\{\sqrt{2}\cos\left(2\pi nt\right) \mid n \in \mathbb{N}\right\} \cup \left\{1\right\}$$
(1)

where \mathbb{N} is the set of natural numbers. Show that these Fourier basis functions are *orthonormal*, ie. they are orthogonal to each other (**PTS: 0-2**) and they each have magnitude 1 (**PTS: 0-2**). (Take the limits of integration as [0, 1].)

3. Projections

- (a) **(PTS: 0-2)** Compute the projection of $x = [1, 2, 3]^T$ onto $y = [1, 1, -2]^T$.
- (b) **(PTS: 0-2)** Compute the projection of $x = [1, 2, 3]^T$ onto the range of

$$Y = \begin{bmatrix} 1 & 1\\ -1 & 0\\ 0 & 1 \end{bmatrix}$$

4. Block Matrix Computations

Multiply the following block matrices together. In each case give the required dimensions of the sub-blocks of B. If the dimensions are not determined by the shapes of A, then pick a dimension that works.

(a) **(PTS: 0-2)**

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1N} \\ \vdots & & \vdots \\ A_{M1} & \cdots & A_{MN} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & \cdots & B_{1K} \\ \vdots & & \vdots \\ B_{N1} & \cdots & B_{NK} \end{bmatrix}, \quad AB = ?$$
(2)

where $A_{11} \in \mathbb{R}^{m_1 \times n_1}$, $A_{1N} \in \mathbb{R}^{m_1 \times n_N}$, $A_{M1} \in \mathbb{R}^{m_M \times n_1}$, and $A_{MN} \in \mathbb{R}^{m_M \times n_N}$.

(b) (PTS: 0-2)

$$A = \begin{bmatrix} - & A_1 & - \\ \vdots & & \vdots \\ - & A_m & - \end{bmatrix}, \quad B = \begin{bmatrix} | & \cdots & | \\ B_1 & & B_k \\ | & \cdots & | \end{bmatrix}, \quad AB = ?$$
(3)

where $A_1 \in \mathbb{R}^{1 \times n}$ and $A_m \in \mathbb{R}^{1 \times n}$.

(c) **(PTS: 0-2)**

$$\begin{bmatrix} | & \cdots & | \\ A_1 & & A_n \\ | & \cdots & | \end{bmatrix}, \quad B = \begin{bmatrix} - & B_1 & - \\ \vdots & & \vdots \\ - & B_n & - \end{bmatrix}, \quad AB = ?$$
(4)

where $A_1 \in \mathbb{R}^{m \times 1}$ and $A_n \in \mathbb{R}^{m \times 1}$.

(d) (PTS: 0-2)

$$A = \begin{bmatrix} - & A_1 & - \\ \vdots & & \vdots \\ - & A_m & - \end{bmatrix}, \quad D \in \mathbb{R}^{n \times n}, \quad B = \begin{bmatrix} | & \cdots & | \\ B_1 & & B_k \\ | & \cdots & | \end{bmatrix}, \quad ADB = ?$$
(5)

where $A_1 \in \mathbb{R}^{1 \times n}$, $A_m \in \mathbb{R}^{1 \times n}$.

(e) **(PTS: 0-2)**

$$\begin{bmatrix} | & \cdots & | \\ A_1 & & A_n \\ | & \cdots & | \end{bmatrix}, \quad D = \begin{bmatrix} d_{11} & \cdots & d_{1n} \\ \vdots & & \vdots \\ d_{n1} & \cdots & d_{nn} \end{bmatrix}, \quad B = \begin{bmatrix} - & B_1 & - \\ \vdots & & \vdots \\ - & B_n & - \end{bmatrix}, \quad ADB = ? \quad (6)$$

where $A_1 \in \mathbb{R}^{m \times 1}$, $A_n \in \mathbb{R}^{m \times 1}$, $d_{ij} \in \mathbb{R}$.

(f) (PTS: 0-2)

$$A \in \mathbb{R}^{m \times n}, \quad \begin{bmatrix} B_1 & \cdots & B_k \end{bmatrix}, \quad AB = ?$$
 (7)

(g) (PTS: 0-2)

$$A = \begin{bmatrix} -A_1 - \\ \vdots \\ -A_m - \end{bmatrix}, \quad B, \qquad AB = ?$$
(8)

where $A_1, A_m \in \mathbb{R}^{1 \times n}$.

5. Norms

(a) **(PTS: 0-2)** Compute the *p*-norm of the vector $x = \begin{bmatrix} -1 & 2 & 3 & -2 \end{bmatrix}^T$ for $p = 1, 2, 10, 100, \infty$.

(b) **(PTS: 0-2)** Show that the '*p*-norm' for $p = \frac{1}{2}$ does not satisfy the triangle inequality, ie. find examples of $x, y \in \mathbb{R}^2$ such that $|x + y|_{\frac{1}{2}} \nleq |x|_{\frac{1}{2}} + |y|_{\frac{1}{2}}$.

6. Vector Derivatives NOTE: DUE WITH HOMEWORK 2

- Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$. Compute $\frac{\partial f}{\partial x}$ for the following functions:
 - (a) **(PTS: 0-2)**

$$f(x) = x_1^4 + 3x_1x_2^2 + e^{x_2} + \frac{1}{x_1x_2}$$

(b) **(PTS: 0-2)**

$$f(x) = \begin{bmatrix} \beta x_1 + \alpha x_2 \\ \beta (x_1 + x_2) \\ \alpha^2 x_1 + \beta x_2 \\ \beta x_1 + \frac{1}{\alpha} x_2 \end{bmatrix}$$

- for $\alpha, \beta \in \mathbb{R}$
- (c) **(PTS: 0-2)**

$$f(x) = \begin{bmatrix} e^{x^T Q x} \\ (x^T Q x)^{-1} \end{bmatrix}$$

for some $Q = Q^T \in \mathbb{R}^{2 \times 2}$.