AA/EE/ME 510-Linear System Theory - Fall 2020

Homework 1

Due Date: Sunday, Oct $11^{\text {th }}$, 2020 at 11:59 pm

1. Inner Products

(a) (PTS: 0-2) Prove $y^{T} x=|x||y| \cos \theta$ using the definition of the 2-norm and the law of cosines.
(b) (PTS: 0-2) Prove the parallelogram law:

$$
|x+y|^{2}+|x-y|^{2}=2|x|^{2}+2|y|^{2}
$$

2. Fourier Bases

The Fourier basis functions are given by

$$
\begin{equation*}
\{\sqrt{2} \sin (2 \pi n t) \mid n \in \mathbb{N}\} \cup\{\sqrt{2} \cos (2 \pi n t) \mid n \in \mathbb{N}\} \cup\{1\} \tag{1}
\end{equation*}
$$

where \mathbb{N} is the set of natural numbers. Show that these Fourier basis functions are orthonormal, ie. they are orthogonal to each other (PTS: 0-2) and they each have magnitude 1 (PTS: 0-2). (Take the limits of integration as $[0,1]$.)

3. Projections

(a) (PTS: 0-2) Compute the projection of $x=[1,2,3]^{T}$ onto $y=[1,1,-2]^{T}$.
(b) (PTS: 0-2) Compute the projection of $x=[1,2,3]^{T}$ onto the range of

$$
Y=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
0 & 1
\end{array}\right]
$$

4. Block Matrix Computations

Multiply the following block matrices together. In each case give the required dimensions of the sub-blocks of B. If the dimensions are not determined by the shapes of A, then pick a dimension that works.
(a) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 N} \tag{2}\\
\vdots & & \vdots \\
A_{M 1} & \cdots & A_{M N}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 K} \\
\vdots & & \vdots \\
B_{N 1} & \cdots & B_{N K}
\end{array}\right], \quad A B=?
$$

where $A_{11} \in \mathbb{R}^{m_{1} \times n_{1}}, A_{1 N} \in \mathbb{R}^{m_{1} \times n_{N}}, A_{M 1} \in \mathbb{R}^{m_{M} \times n_{1}}$, and $A_{M N} \in \mathbb{R}^{m_{M} \times n_{N}}$.
(b) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
- & A_{1} & - \tag{3}\\
\vdots & & \vdots \\
- & A_{m} & -
\end{array}\right], \quad B=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
B_{1} & & B_{k} \\
\mid & \cdots & \mid
\end{array}\right], \quad A B=?
$$

where $A_{1} \in \mathbb{R}^{1 \times n}$ and $A_{m} \in \mathbb{R}^{1 \times n}$.
(c) (PTS: 0-2)

$$
\left[\begin{array}{ccc}
\mid & \cdots & \mid \tag{4}\\
A_{1} & & A_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad B=\left[\begin{array}{ccc}
- & B_{1} & - \\
\vdots & & \vdots \\
- & B_{n} & -
\end{array}\right], \quad A B=?
$$

where $A_{1} \in \mathbb{R}^{m \times 1}$ and $A_{n} \in \mathbb{R}^{m \times 1}$.
(d) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
- & A_{1} & - \tag{5}\\
\vdots & & \vdots \\
- & A_{m} & -
\end{array}\right], \quad D \in \mathbb{R}^{n \times n}, \quad B=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
B_{1} & & B_{k} \\
\mid & \cdots & \mid
\end{array}\right], \quad A D B=?
$$

where $A_{1} \in \mathbb{R}^{1 \times n}, A_{m} \in \mathbb{R}^{1 \times n}$.
(e) (PTS: 0-2)

$$
\left[\begin{array}{ccc}
\mid & \cdots & \mid \tag{6}\\
A_{1} & & A_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad D=\left[\begin{array}{ccc}
d_{11} & \cdots & d_{1 n} \\
\vdots & & \vdots \\
d_{n 1} & \cdots & d_{n n}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
- & B_{1} & - \\
\vdots & & \vdots \\
- & B_{n} & -
\end{array}\right], \quad A D B=?
$$

where $A_{1} \in \mathbb{R}^{m \times 1}, A_{n} \in \mathbb{R}^{m \times 1}, d_{i j} \in \mathbb{R}$.
(f) (PTS: 0-2)

$$
A \in \mathbb{R}^{m \times n}, \quad\left[\begin{array}{lll}
B_{1} & \cdots & B_{k} \tag{7}
\end{array}\right], \quad A B=?
$$

(g) (PTS: 0-2)

$$
A=\left[\begin{array}{c}
-A_{1}- \tag{8}\\
\vdots \\
-A_{m}-
\end{array}\right], \quad B, \quad A B=?
$$

where $A_{1}, A_{m} \in \mathbb{R}^{1 \times n}$.

5. Norms

(a) (PTS: 0-2) Compute the p-norm of the vector $x=\left[\begin{array}{cccc}-1 & 2 & 3 & -2\end{array}\right]^{T}$ for $p=1,2,10,100, \infty$.
(b) (PTS: 0-2) Show that the ' p-norm' for $p=\frac{1}{2}$ does not satisfy the triangle inequality, ie. find examples of $x, y \in \mathbb{R}^{2}$ such that $|x+y|_{\frac{1}{2}} \not \leq|x|_{\frac{1}{2}}+|y|_{\frac{1}{2}}$.
6. Vector Derivatives NOTE: DUE WITH HOMEWORK 2

Let $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$. Compute $\frac{\partial f}{\partial x}$ for the following functions:
(a) (PTS: 0-2)

$$
f(x)=x_{1}^{4}+3 x_{1} x_{2}^{2}+e^{x_{2}}+\frac{1}{x_{1} x_{2}}
$$

(b) (PTS: 0-2)

$$
f(x)=\left[\begin{array}{c}
\beta x_{1}+\alpha x_{2} \\
\beta\left(x_{1}+x_{2}\right) \\
\alpha^{2} x_{1}+\beta x_{2} \\
\beta x_{1}+\frac{1}{\alpha} x_{2}
\end{array}\right]
$$

for $\alpha, \beta \in \mathbb{R}$
(c) (PTS: 0-2)

$$
f(x)=\left[\begin{array}{c}
x^{x^{T} Q x} \\
\left(x^{T} Q x\right)^{-1}
\end{array}\right]
$$

for some $Q=Q^{T} \in \mathbb{R}^{2 \times 2}$.

