AA/ME/EE 510 - Linear Systems Theory - Autumn 2020

Homework 2

Due Date: Sunday, Oct $18^{\text {th }}, 2020$ at 11:59pm

1. Vector Derivatives

Let $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$. Compute $\frac{\partial f}{\partial x}$ for the following functions:
(a) (PTS: 0-2)

$$
f(x)=x_{1}^{4}+3 x_{1} x_{2}^{2}+e^{x_{2}}+\frac{1}{x_{1} x_{2}}
$$

(b) (PTS: 0-2)

$$
f(x)=\left[\begin{array}{c}
\beta x_{1}+\alpha x_{2} \\
\beta\left(x_{1}+x_{2}\right) \\
\alpha^{2} x_{1}+\beta x_{2} \\
\beta x_{1}+\frac{1}{\alpha} x_{2}
\end{array}\right]
$$

for $\alpha, \beta \in \mathbb{R}$
(c) (PTS: 0-2)

$$
f(x)=\left[\begin{array}{c}
e^{x^{T} Q x} \\
\left(x^{T} Q x\right)^{-1}
\end{array}\right]
$$

for some $Q=Q^{T} \in \mathbb{R}^{2 \times 2}$.

2. Projections

(PTS: 0-2) Consider the matrix $A \in \mathbb{R}^{m \times n}$ (with full column rank and $m>n$) and the two projection matrices $P=A\left(A^{T} A\right)^{-1} A^{T}$ and $I-P$. Show that $P=P^{2}$ and $I-P=(I-P)^{2}$.
3. Linear Transformations of Sets
(a) Affine Sets: Consider the affine sets for $x \in \mathbb{R}^{2}$.

$$
\mathcal{X}_{1}=\left\{x \mid x_{1}+x_{2}=1, x \in \mathbb{R}^{2}\right\}, \quad \mathcal{X}_{2}=\left\{x \mid x_{1}-x_{2}=1, x \in \mathbb{R}^{2}\right\}
$$

Draw the set of points $A x$ for $x \in \mathcal{X}_{1}$ and $x \in \mathcal{X}_{2}$ for
(PTS: 0-2) $\quad A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad(P T S: ~ 0-2) \quad A=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right], \quad\left(\right.$ PTS: 0-2) $\quad A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
(b) Unit Balls: Consider the unit-balls defined by the 1-norm, the 2-norm, and the ∞-norm. $\mathcal{X}_{1}=\left\{\left.x| | x\right|_{1} \leq 1, x \in \mathbb{R}^{2}\right\}, \quad \mathcal{X}_{2}=\left\{\left.x| | x\right|_{2} \leq 1, x \in \mathbb{R}^{2}\right\}, \quad \mathcal{X}_{\infty}=\left\{\left.x| | x\right|_{\infty} \leq 1, x \in \mathbb{R}^{2}\right\}$

Draw the set of points $A x$ for $x \in \mathcal{X}_{1}, x \in \mathcal{X}_{2}$, and $x \in \mathcal{X}_{\infty}$ for
(PTS: 0-2) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad$ (PTS: 0-2) $\quad A=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right], \quad\left(\right.$ PTS: 0-2) $\quad A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
(c) Convex Hulls: Consider the simplicies in $\mathbb{R}^{2}, \mathbb{R}^{3}$, and \mathbb{R}^{4} respectively

$$
\begin{aligned}
& \Delta_{2}=\left\{x \mid \mathbf{1}^{T} x=1, x \geq 0, x \in \mathbb{R}^{2}\right\}, \\
& \Delta_{3}=\left\{x \mid \mathbf{1}^{T} x=1, x \geq 0, x \in \mathbb{R}^{3}\right\}, \\
& \Delta_{4}=\left\{x \mid \mathbf{1}^{T} x=1, x \geq 0, x \in \mathbb{R}^{4}\right\}
\end{aligned}
$$

where 1 is the vector of all ones of the appropriate dimension and \geq is an element-wise inequality.
Draw the set of points $A x$ for

$$
\begin{array}{ll}
\text { (PTS: 0-2) } & A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], x \in \Delta_{2} \\
\text { (PTS: 0-2) } & A=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right], x \in \Delta_{3} \\
\text { (PTS: 0-2) } & A=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & -1
\end{array}\right], x \in \Delta_{4}
\end{array}
$$

4. Roots of Unity:

(a) (PTS: 0-2) List the complex solutions to the equation $z^{4}=1, z \in \mathbb{C}$ (the 4-th roots of unity).
(b) (PTS: 0-2) For each 4-th root of unity given above, plot z^{t} for $t=0,1,2,3,4$ in the complex plane.
(c) (PTS: 0-2) Consider the complex signals $f_{k}(t)=e^{\frac{2 \pi i k t}{8}}$ for $k=0,1,2, \ldots, 7$. Plot $\boldsymbol{\operatorname { R e }}\left(f_{k}(t)\right)$ for $t=0,1,2, \ldots, 7$ for $k=0,1,2, \ldots, 7$.

