AA/ME/EE 510-Linear Systems Theory - Fall 2020

Homework 3

Due Date: Sunday, Oct $25^{\text {th }}, 2020$ at 11:59pm

1. Truth Tables

For each logical statement, cross out the boxes that are impossible given the statement in the upper-left corner.
(a) (PTS: 0-2)

$\mathrm{p} \wedge q$	q	$\neg q$
p		
$\neg p$		

$\mathrm{p} \vee q$	q	$\neg q$
p		
$\neg p$		

$(p \wedge \neg q) \vee(\neg p \wedge q)$	q	$\neg q$
p		
$\neg p$		

(b) (PTS: 0-2)

$\mathrm{p} \Rightarrow q$	q	$\neg q$
p		
$\neg p$		

$\mathrm{p} \Leftarrow q$	q	$\neg q$
p		
$\neg p$		

$\mathrm{p} \Longleftrightarrow q$	q	$\neg q$
p		
$\neg p$		

2. Coordinates

Let y be the coordinates of a vector with respect to the standard basis in \mathbb{R}^{2}. In each case below consider a different basis for \mathbb{R}^{2} given by the columns of the matrix T. Compute the coordinates of the vector y with respect to the new basis 1) by graphically drawing the columns of T and y as vectors and 2) by inverting the matrix T, ie. by solving $y=T x$.
(a) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
4 \\
0
\end{array}\right], \quad T=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

(b) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \quad T=\left[\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right]
$$

(c) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \quad T=\left[\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right]
$$

(d) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{c}
2 \\
-2
\end{array}\right], \quad T=\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]
$$

3. Block Matrix Inversion

Consider the block matrix

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

(a) (PTS: 0-2) Show that

$$
M=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B \\
0 & I
\end{array}\right]
$$

(b) (PTS: 0-2) Show that

$$
\left[\begin{array}{cc}
E & 0 \\
0 & F
\end{array}\right]^{-1}=\left[\begin{array}{cc}
E^{-1} & 0 \\
0 & F^{-1}
\end{array}\right]
$$

(c) (PTS: 0-2) Show that

$$
\left[\begin{array}{cc}
I & G \\
0 & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I & -G \\
0 & I
\end{array}\right]
$$

(d) (PTS: 0-2) Show that

$$
M^{-1}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

Note: you can do this either by using the first three parts or by showing directly that $M^{-1} M=I$.

4. Woodbury Matrix Identity

Let $M=A+U C V$ where $M, A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times m}$ and let $n>m$.
(a) (PTS: 0-2) What are the dimensions of U and V ? Which one is tall and which one was fat?
(b) (PTS: 0-2) Show the Woodbury Matrix Identity

$$
M^{-1}=(A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}
$$

5. Steinitz Exchange Lemma

For a vector space \mathcal{V}, let the columns of V be a linearly independent set of m vectors and let the columns of W span all of \mathcal{V}.

$$
V=\left[\begin{array}{ccc}
\mid & & \mid \\
V_{1} & \cdots & V_{m} \\
\mid & & \mid
\end{array}\right], \quad W=\left[\begin{array}{ccc}
\mid & & \mid \\
W_{1} & \cdots & W_{n} \\
\mid & & \mid
\end{array}\right]
$$

Show that for $k \leq m$, you can always select $n-k$ cols of W so that the columns of

$$
V^{k}=\left[\begin{array}{cccccc}
\mid & & \mid & \mid & & \mid \\
V_{1} & \cdots & V_{k} & W_{k+1} & \cdots & W_{n} \\
\mid & & \mid & \mid & & \mid
\end{array}\right],
$$

span all of \mathcal{V}. Use an inductive argument by following these steps.
(a) (PTS: 0-2) Show that the columns of

$$
V^{0}=W=\left[\begin{array}{ccc}
\mid & & \mid \\
W_{1} & \cdots & W_{n} \\
\mid & & \mid
\end{array}\right]
$$

$\operatorname{span} \mathcal{V}$.
(b) (PTS: 0-2) Show that if the columns of

$$
V^{k-1}=\left[\begin{array}{cccccc}
\mid & & \mid & \mid & & \mid \\
V_{1} & \cdots & V_{k-1} & W_{k} & \cdots & W_{n} \\
\mid & & \mid & \mid & & \mid
\end{array}\right],
$$

span \mathcal{V}, then the columns of

$$
V^{k}=\left[\begin{array}{cccccc}
\mid & & \mid & \mid & & \mid \\
V_{1} & \cdots & V_{k} & W_{k+1} & \cdots & W_{n} \\
\mid & & \mid & \mid & & \mid
\end{array}\right],
$$

span \mathcal{V}. (Note that if you need to, you can reorder the columns of W at any point.) Note: Setting $k=m$, shows that $m \leq n$ and that a set of spanning vectors can always be used to augment a set of linearly independent vectors to create a basis for a finite dimensional vector space \mathcal{V}. This is called completing a basis.

