AE 510 - Linear Systems Theory - Winter 2020

Homework 4

Due Date: Sunday, Nov $1^{s t}, 2020$ at 11:59pm

1. Elementary Matrices and Matrix Inverses

Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

(a) (PTS: 0-2) Compute a sequence of elementary matrices that could be used to row-reduce A to the identity.
(b) (PTS: 0-2) Use this sequence of elementary matrices to compute A^{-1}.

2. Similarity Transformations

Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

and the equation $y=A x$ for $x, y \in \mathbb{R}^{2}$. For each coordinate transformation $T \in \mathbb{R}^{2 \times 2}$ shown below, compute the matrix A^{\prime} such that $y^{\prime}=A^{\prime} x^{\prime}$ when $x=T x^{\prime}$ and $y=T y^{\prime}$.

$$
\text { (PTS: 0-2) } \quad T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad\left(\text { PTS: 0-2) } \quad T=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right],\right.
$$

3. Rotation Matrices

Recall that a rotation matrix is a matrix $R \in \mathbb{R}^{n \times n}$ that satisfies $R^{T} R=I$ and $\operatorname{det}(R)=1$.
(a) (PTS: 0-2) Consider $R \in \mathbb{R}^{n \times n}$. Show that if R is a rotation matrix, then its inverse is also a rotation matrix.
(b) (PTS: 0-2) Consider $R_{1}, R_{2} \in \mathbb{R}^{n \times n}$ and $R=R_{1} R_{2}$. Prove that if R_{1} and R_{2} are rotation matrices, then R is also a rotation matrix.

4. Finding a Nullspace Basis

(a) Basis Derivation

Consider a fat matrix $A \in \mathbb{R}^{m \times n}(m<n)$ that is partitioned as $A=\left[\begin{array}{ll}A_{1} & A_{2}\end{array}\right]$ with $A_{1} \in \mathbb{R}^{m \times m}$ invertible. Show that the columns of $B \in \mathbb{R}^{n \times n-m}$

$$
B=\left[\begin{array}{c}
-A_{1}^{-1} A_{2} \\
I
\end{array}\right]
$$

form a basis for the nullspace of $A, \mathcal{N}(A)$ by performing the following two steps.
i. (PTS: 0-2) Show that any vector $v \in \mathcal{N}(A)$ can be written as $v=B w$ for some $w \in \mathbb{R}^{n-m}$, ie. v is linear combination of the columns of B (the columns of B span the nullspace).
ii. (PTS: 0-2) Show that the columns of B are linearly independent.
(b) Computation

For the following matrices explicitly compute a basis for their nullspaces BY HAND, ie. do not use computational software.
i. (PTS: 0-2)

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & 0
\end{array}\right]
$$

ii. (PTS: 0-2)

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 & 0 & 0
\end{array}\right]
$$

iii. (PTS: 0-2)

$$
A=\left[\begin{array}{cccc}
2 & -1 & 1 & 2 \\
1 & 1 & 3 & 4
\end{array}\right]
$$

5. Matrix Rank

The column rank of a matrix is the number of linearly independent columns. The row rank of a matrix is the number of linearly independent row.
(a) (PTS: 0-2) Show that the row rank is less than or equal to the column rank.
(b) (PTS: 0-2) Show that the col rank is less than or equal to the row rank.

6. Range and Nullspace

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ represent the range and nullspace of A (and similarly let $\mathcal{R}\left(A^{T}\right)$ and $\mathcal{N}\left(A^{T}\right)$ be the range and nullspace of A^{T}).
(a) (PTS: 0-2) Suppose $y \in \mathcal{R}(A)$ and $x \in \mathcal{N}\left(A^{T}\right)$. Show that $x \perp y$, ie. $x^{T} y=0$.
(b) (PTS: 0-2) Consider $A \in \mathbb{R}^{5 \times 10}$. Suppose A has only 3 linearly independent columns (the other 7 are linearly dependent on the first 3). What is the dimension of $\mathcal{R}(A)$? What is the dimension of $\mathcal{N}\left(A^{T}\right)$?
(c) (PTS: 0-2) What is the dimension of $\mathcal{N}(A)$? What is the dimension of $\mathcal{R}\left(A^{T}\right)$?

7. Least Squares and Minimum Norm Solutions

(a) (PTS: 0-2) Consider $A \in \mathbb{R}^{m \times n}$ where $m>n$ (A is "tall") and A has full-column rank (the columns are linear independent). Show that the least squares solution $x=\left(A^{\top} A\right)^{-1} A^{\top} y$, minimizes $|y-A x|^{2}$, ie. makes $A x$ as close as possible to y.
(b) (PTS: 0-2) Consider $A \in \mathbb{R}^{m \times n}$ where $m<n$ (A is "fat") and A has full-row rank (the rows are linear independent). Let $x=A^{\top}\left(A A^{\top}\right)^{-1} y$ and $z \in \mathbb{R}^{n}$ be any vector such that $y=A z$. Show that $|x| \leq|z|$.

