Homework 4

<u>Due Date</u>: Sunday, Nov 1^{st} , 2020 at 11:59pm

1. Elementary Matrices and Matrix Inverses

Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

- (a) **(PTS: 0-2)** Compute a sequence of elementary matrices that could be used to row-reduce A to the identity.
- (b) (PTS: 0-2) Use this sequence of elementary matrices to compute A^{-1} .

2. Similarity Transformations

Consider the matrix

$$A = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}$$

and the equation y = Ax for $x, y \in \mathbb{R}^2$. For each coordinate transformation $T \in \mathbb{R}^{2 \times 2}$ shown below, compute the matrix A' such that y' = A'x' when x = Tx' and y = Ty'.

(PTS: 0-2)
$$T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, (PTS: 0-2) $T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$,

3. Rotation Matrices

Recall that a rotation matrix is a matrix $R \in \mathbb{R}^{n \times n}$ that satisfies $R^T R = I$ and $\det(R) = 1$.

- (a) **(PTS: 0-2)** Consider $R \in \mathbb{R}^{n \times n}$. Show that if R is a rotation matrix, then its inverse is also a rotation matrix.
- (b) **(PTS: 0-2)** Consider $R_1, R_2 \in \mathbb{R}^{n \times n}$ and $R = R_1 R_2$. Prove that if R_1 and R_2 are rotation matrices, then R is also a rotation matrix.

4. Finding a Nullspace Basis

(a) **Basis Derivation**

Consider a fat matrix $A \in \mathbb{R}^{m \times n}$ (m < n) that is partitioned as $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$ with $A_1 \in \mathbb{R}^{m \times m}$ invertible. Show that the columns of $B \in \mathbb{R}^{n \times n-m}$

$$B = \begin{bmatrix} -A_1^{-1}A_2\\I \end{bmatrix}$$

form a basis for the nullspace of A, $\mathcal{N}(A)$ by performing the following two steps.

- i. (PTS: 0-2) Show that any vector $v \in \mathcal{N}(A)$ can be written as v = Bw for some $w \in \mathbb{R}^{n-m}$, i.e. v is linear combination of the columns of B (the columns of B span the nullspace).
- ii. (PTS: 0-2) Show that the columns of B are linearly independent.

(b) Computation

For the following matrices explicitly compute a basis for their nullspaces BY HAND, ie. do not use computational software.

i. (PTS: 0-2)

ii. (PTS: 0-2)

iii. (PTS: 0-2)

	$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \end{bmatrix}$	
	$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \end{bmatrix}$	
)	$A = \begin{bmatrix} 2 & -1 & 1 & 2 \\ 1 & 1 & 3 & 4 \end{bmatrix}$	

5. Matrix Rank

The column rank of a matrix is the number of linearly independent columns. The row rank of a matrix is the number of linearly independent row.

- (a) (PTS: 0-2) Show that the row rank is less than or equal to the column rank.
- (b) (PTS: 0-2) Show that the col rank is less than or equal to the row rank.

6. Range and Nullspace

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ represent the range and nullspace of A (and similarly let $\mathcal{R}(A^T)$ and $\mathcal{N}(A^T)$) be the range and nullspace of A^T).

- (a) (PTS: 0-2) Suppose $y \in \mathcal{R}(A)$ and $x \in \mathcal{N}(A^T)$. Show that $x \perp y$, i.e $x^T y = 0$.
- (b) (PTS: 0-2) Consider $A \in \mathbb{R}^{5 \times 10}$. Suppose A has only 3 linearly independent columns (the other 7 are linearly dependent on the first 3). What is the dimension of $\mathcal{R}(A)$? What is the dimension of $\mathcal{N}(A^T)$?
- (c) (PTS: 0-2) What is the dimension of $\mathcal{N}(A)$? What is the dimension of $\mathcal{R}(A^T)$?

7. Least Squares and Minimum Norm Solutions

- (a) (PTS: 0-2) Consider $A \in \mathbb{R}^{m \times n}$ where m > n (A is "tall") and A has full-column rank (the columns are linear independent). Show that the least squares solution $x = (A^{\intercal}A)^{-1}A^{\intercal}y$, minimizes $|y Ax|^2$, i.e. makes Ax as close as possible to y.
- (b) **(PTS: 0-2)** Consider $A \in \mathbb{R}^{m \times n}$ where m < n (A is "fat") and A has full-row rank (the rows are linear independent). Let $x = A^{\intercal}(AA^{\intercal})^{-1}y$ and $z \in \mathbb{R}^n$ be any vector such that y = Az. Show that $|x| \leq |z|$.