Homework 5

Due Date: Sunday, Nov 8^{th} , 2020 at 11:59pm

1. Lagrange Multipliers - Nonlinear Programming

Consider the following constrained optimization problem

$$\min_{x \in \mathbb{R}^2} \quad \frac{1}{2}(x_1^2 + x_2^2)$$

s.t. $x_2 = -\frac{1}{2}(x_1 - 1)^2$

- (a) (PTS: 0-2) Draw the level sets of the objective function and the constrained set on a plot in ℝ².
- (b) (PTS: 0-2) Write out the Lagrangian $\mathcal{L}(x, \lambda)$ with a dual variable $\lambda \in \mathbb{R}$ and the optimality conditions.
- (c) **(PTS: 0-2)** Solve for the optimal primal variable $x \in \mathbb{R}^2$ and the optimal dual variable $\lambda \in \mathbb{R}$ by solving the optimality conditions.
- (d) (PTS: 0-2) Solve the problem again with new objective function $5(x_1^2 + x_2^2)$ and replace λ with $-\lambda$ in your Lagrangian. How does the optimal x change? How does the optimal λ change?

2. Lagrange Multipliers - Convex Quadratic Programming

Consider the following constrainted optimization problem

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2}x^T Q x - c^T x$$

s.t. $Ax = b$

where $Q \in \mathbb{R}^{n \times n}$, $Q = Q^T \succ 0$ (symmetric, positive definite), $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ (m < n) and $b \in \mathbb{R}^m$.

- (a) (PTS: 0-2) Write out the Lagrangian $\mathcal{L}(x, \lambda)$ and the optimality conditions with dual variables $\lambda \in \mathbb{R}^m$.
- (b) (PTS: 0-2) Transform the optimality conditions into a system of m + n linear equations for the variables λ and x.
- (c) **(PTS: 0-2)** Show that

$$\begin{bmatrix} A^T & Q \\ 0 & A \end{bmatrix}^{-1} = \begin{bmatrix} (AQ^{-1}A^T)^{-1}AQ^{-1} & -(AQ^{-1}A^T)^{-1} \\ Q^{-1} - Q^{-1}A^T(AQ^{-1}A^T)^{-1}AQ^{-1} & Q^{-1}A^T(AQ^{-1}A^T)^{-1} \end{bmatrix}$$

(d) (PTS: 0-2) Solve for the optimal x and λ in terms of Q, c, A, b.

3. Grammian Rank

(PTS: 0-2) Show that $A^T A$ has the same rank as $A \in \mathbb{R}^{m \times n}$. Hint: use the rank-nullity theorem and show that both matrices have identical nullspaces.

4. Basis for Domain from Nullspace of A and Range of A^T

Consider $A \in \mathbb{R}^{m \times n}$ with m < n and full row rank and a matrix $N \in \mathbb{R}^{n \times n-m}$ with full column rank whose columns span the nullspace of A. Suppose we write a vector $x \in \mathbb{R}^n$ as a linear combination of the rows of A and the columns of N, ie.

$$x = \begin{bmatrix} A^T & N \end{bmatrix} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}.$$

for $x'_1 \in \mathbb{R}^m$ and $x'_2 \in \mathbb{R}^{n-m}$

- (a) **(PTS: 0-2)** Symbollically compute $\begin{bmatrix} A^T & N \end{bmatrix}^{-1}$. Hint: Start by checking if $\begin{bmatrix} A^T & N \end{bmatrix}^{-1} = \begin{bmatrix} A^T & N \end{bmatrix}^T$...
- (b) (PTS: 0-2) Solve for x'_1 and x'_2 given A, N, and x.

5. Sylvester's Inequality

Prove Sylvester's inequality.

$$\operatorname{rk}(A) + \operatorname{rk}(B) \le \operatorname{rk}(AB) + n$$

for matrices $A, B \in \mathbb{R}^{n \times n}$

(a) (PTS: 0-2) Show that this inequality can be rewritten as

$$n - \operatorname{rk}(A) + n - \operatorname{rk}(B) \ge n - \operatorname{rk}(AB)$$

and interpret this new form in terms of the dimensions of the nullspaces of A, B, and AB.

(b) (PTS: 0-2) Prove Sylvester's inequality.

6. Fundamental Theorem of Linear Algebra Pictures

For each of the following matrices draw a picture of the domain (either \mathbb{R}^2 or \mathbb{R}^3) labeling $\mathcal{R}(A^T)$ and $\mathcal{N}(A)$ and a picture of the co-domain (either \mathbb{R}^2 or \mathbb{R}^3) labeling the $\mathcal{R}(A)$ and $\mathcal{N}(A^T)$.

(PTS: 0-2)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 (PTS: 0-2) $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$
(PTS: 0-2) $A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ (PTS: 0-2) $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$