# AE 510 - Linear Systems Theory - Winter 2020 

## Homework 6

Due Date: Wednesday, Nov $25^{\text {th }}, 2020$ at 11:59pm

## 1. Spectral Mapping Theorem

Consider a diagonalizable matrix $A$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and a polynomial function $f$ : $R^{n \times n} \rightarrow R^{n \times n}$.
(a) (PTS: 0-2) Show that the eigenvectors (left and right) of $f(A)$ are the same as the eigenvectors of $A$.
(b) (PTS: 0-2) Show that the eigenvalues of $f(A)$ are $f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)$.

## 2. Cayley-Hamilton Theorem

(a) (PTS: 0-2) The eigenvalues of a matrix $A$ are roots of its characteristic polynomial, $\chi(\lambda)=$ $\operatorname{det}(\lambda I-A)$, ie. $\operatorname{det}\left(\lambda_{i} I-A\right)=0$ if $\lambda_{i}$ is an eigenvalue of $A$. Show that $\chi(A)=\mathbf{0}$ (where $\mathbf{0}$ is a matrix of zeros). (Hint: use the spectral mapping theorem).
(b) (PTS: 0-2). Suppose that $\chi(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{3}-2 \lambda^{2}+\lambda-1$. Use Cayley-Hamilton to write an expression for $A^{6}$ in terms of $A^{2}, A, I$. Note that when you plug the matrix $A$ into $\chi(\cdot)$ you replace each constant with that constant times the identity matrix, ie. $\chi(A)=$ $A^{3}-2 A^{2}+A-I$.

## 3. Computing Eigenvalues and Diagonalization

Compute eigenvalues and right eigenvectors for each of the following matrices. Write out a diagonalization for each matrix. If the matrix has complex eigenvalues, then write it in both of these forms.

$$
\left[\begin{array}{cc}
\mid & \mid \\
\frac{1}{\sqrt{2}}(u-v i) & \frac{1}{\sqrt{2}}(u+v i) \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
a+b i & 0 \\
0 & a-b i
\end{array}\right]\left[\begin{array}{l}
-\frac{1}{\sqrt{2}}\left(w^{T}+y^{T} i\right)- \\
-\frac{1}{\sqrt{2}}\left(w^{T}-y^{T} i\right)-
\end{array}\right]=\left[\begin{array}{cc}
\mid & \mid \\
u & v \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{c}
-w^{T}- \\
-y^{T}-
\end{array}\right]
$$

(a) (PTS: 0-2) Eigenvalues, Eigenvectors, (PTS: 0-2) Diagonal form, Complex form?

$$
A=\frac{1}{2}\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]
$$

(b) (PTS: 0-2) Eigenvalues, Eigenvectors, (PTS: 0-2) Diagonal form, Complex form?

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]
$$

(c) (PTS: 0-2) Eigenvalues, Eigenvectors, (PTS: 0-2) Diagonal form, Complex form?

$$
A=\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right]
$$

## 4. Rotation Matrices and Complex Eigenvectors

Consider the two rotation matrices

$$
R_{1}=\left[\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right], \quad R_{2}=\left[\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right]
$$

(a) (PTS: 0-2) Show that $R_{1}$ and $R_{2}$ commute, ie. $R_{1} R_{2}=R_{2} R_{1}$ (Note that most matrices do not commute. $2 \times 2$ rotation matrices are an exception.)
(b) (PTS: 0-2) Compute the inverse of $R_{1}$.
(c) (PTS: 0-2) Give a physical interpretation of $R_{1} R_{2}$ and $R_{1}^{-1}$ related to the angles $\theta_{1}$ and $\theta_{2}$.
(d) (PTS: 0-2) Consider a $2 \times 2$ real matrix $A$ that can be diagonalized as

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mid & \mid \\
(u-v i) & (u+v i) \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
r e^{i \theta} & 0 \\
0 & r e^{-i \theta}
\end{array}\right]\left(\left[\begin{array}{cc}
\mid & \mid \\
(u-v i) & (u+v i) \\
\mid & \mid
\end{array}\right] \frac{1}{\sqrt{2}}\right)^{-1}
$$

where $r \in R_{+}$and $u, v \in R^{2}$. Show that another valid diagonalization for $A$ is

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mid & \mid \\
\left(u^{\prime}-v^{\prime} i\right) & \left(u^{\prime}+v^{\prime} i\right) \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
r e^{i \theta} & 0 \\
0 & r e^{-i \theta}
\end{array}\right]\left(\left[\begin{array}{cc}
\mid & \mid \\
\left(u^{\prime}-v^{\prime} i\right) & \left(u^{\prime}+v^{\prime} i\right) \\
\mid & \mid
\end{array}\right] \frac{1}{\sqrt{2}}\right)^{-1}
$$

where $u^{\prime}=\cos (\phi) u+\sin (\phi) v$ and $v^{\prime}=-\sin (\phi) u+\cos (\phi) v$ for any angle $\phi$.

## 5. Orthogonal Eigenvectors

Suppose $p_{1}, p_{2} \in R^{2}$ are linearly independent right eigenvectors of $A \in R^{2 \times 2}$ with eigenvalues $\lambda_{1}, \lambda_{2} \in R$ such that $\lambda_{1} \neq \lambda_{2}$. Suppose that

$$
p_{1}^{T} p_{2}=0, \quad\left|p_{1}\right|=1, \quad\left|p_{2}\right|=2
$$

(a) (PTS: 0-2) Write an expression for a $2 \times 2$ matrix whose rows are the left-eigenvectors of $A$
(b) (PTS: 0-2) Write an expression for a similarity transform that transforms $A$ into a diagonal matrix.

## 6. Traces and Determinants

Assume that $A \in R^{n \times n}$ is diagonalizable and let $\lambda_{1}, \ldots, \lambda_{n}$ be its eigenvalues. Use the properties of traces and determinants to show that
(a) (PTS: 0-2): $\quad \operatorname{Tr}(A)=\sum_{i} \lambda_{i}$
(b) (PTS: 0-2): $\quad \operatorname{det}(A)=\prod_{i} \lambda_{i}$

## 7. Similar Eigenvalues

(a) (PTS: 0-2) Let $A \in \mathbb{R}^{n \times n}$ and let $T \in \mathbb{R}^{n \times n}$ be any non-singular matrix. Show that the eigenvalues of $A$ are the same as those of $T^{-1} A T$. What are the eigenvectors of $T^{-1} A T$ ?
(b) (PTS: 0-2) Let $A, B \in \mathbb{R}^{n \times n}$ be invertible matrices. Show that the eigenvalues of $A B$ are the same as those of $B A$.

