AE 510 - Linear Systems Theory - Winter 2020

Homework 7

Due Date: Monday, Dec $7^{\text {th }}$, 2020 at 11:59pm

1. Nilpotent Matrices

(PTS:0-2) Consider the matrix

$$
N=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

What is N^{2} ? What is N^{3} ? What is N^{4} ? What is the characteristic polynomial of N ? What are the eigenvalues of N ?

2. Jordan Form

Consider a matrix $A \in \mathbb{R}^{3 \times 3}$ with the form

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & w_{1} & v_{2} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & a & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & w_{1} & v_{2} \\
\mid & \mid & \mid
\end{array}\right]^{-1}
$$

- (PTS: 0-2) What is the characteristic polynomial of A ? Write an expression for A^{-1}.
- (PTS: 0-2) Write an expression for the Jordan form of $A=P J P^{-1}$, ie. find P and J. What is the 1st order generalized eigenvector associated with λ_{1} ? What is the 2nd order generalized eigenvector associated with λ_{1} ? What happens when to the Jordan form when $a \rightarrow \infty$? What about when $a \rightarrow 0$?

3. Positive Definite Matrices and Congruent Transformations

- (PTS: 0-2) Show that if $K \in \mathbb{R}^{n \times n}$ is skew-symmetric, i.e. $K^{T}=-K$, then $\mathbf{x}^{T} K \mathbf{x}=0$ for all $x \in \mathbb{R}^{n}$.
- (PTS: 0-2) Consider the quadratic expression $\mathbf{x}^{T} A \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$. Show that for all A, there exists a matrix $B \in \mathbb{R}^{n \times n}$ with $B^{T}=B$ such that

$$
\mathbf{x}^{T} B \mathbf{x}=\mathbf{x}^{T} A \mathbf{x} .
$$

- (PTS: 0-2) Show that if $A \in \mathbb{R}^{n \times n}$ is positive definite then $Q=P^{T} A P$ is positive semidefinite for any $P \in \mathbb{R}^{n \times m}$.

4. Eigenvectors of Symmetric and Skew Symmetric Matrices

- (PTS: 0-2) Show that the eigenvalues of symmetric matrices are always real. Show that the eigenvectors of symmetric matrices are orthogonal.
- (PTS: 0-2) Show that the eigenvalues of skew-symmetric matrices are always imaginary. Show that the eigenvectors of skew-symmetric matrices are orthogonal.

5. Continuous vs. Discrete Time Stability

(PTS: 0-2) Let $\rho(M)$ represent the set of eigenvalues or spectrum of M. Show that if $\operatorname{Re}(\lambda)<0$ for all $\lambda \in \rho(A)$, then $|\mu|<1$ for all $\mu \in \rho\left(e^{A \Delta t}\right)$.

6. Vector Fields and Stability

For each of the following matrices,

$$
A=\frac{1}{2}\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right], \quad A=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right], \quad A=\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right]
$$

consider the system differential equation

$$
\dot{x}=A x
$$

- (PTS: 0-2 (for each)) What are the eigenvalues of $e^{A t}$? Is the system stable? Sketch the vector field for each system labeling the eigenvectors and show a sample trajectory.

7. Singular Value Decomposition

- (PTS:0-4) Show that any matrix $A \in \mathbb{R}^{m \times n}$ can be written in the form

$$
A=U\left[\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right] V^{*}
$$

for $U \in \mathbb{C}^{m \times m}, U^{*} U=I$ and for $V \in \mathbb{C}^{n \times n}, V^{*} V=I, \Sigma \in \mathbb{R}^{k \times k}$ diagonal and $\Sigma \succ 0$ where k is the rank of A. Let

$$
U=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right], \quad V=\left[\begin{array}{c}
V_{1}^{*} \\
V_{2}^{*}
\end{array}\right]
$$

where $U_{1} \in \mathbb{C}^{m \times k}, U_{2} \in \mathbb{C}^{m \times(m-k)}, V_{1} \in \mathbb{C}^{n \times k}, V_{2} \in \mathbb{C}^{n \times(n-k)}$. What spaces are spanned by the columns of U_{1}, U_{2}, V_{1}, and V_{2} ?

- (PTS:0-2) Write expressions for the following matrices in terms of $U_{1}, U_{2}, V_{1}, V_{2}, \Sigma$.

$$
\begin{gathered}
A^{T}=?, \quad, A^{-1}=?, \quad A^{-T}=? \\
\left(A^{T} A\right)^{\frac{1}{2}}=?, \quad\left(A A^{T}\right)^{\frac{1}{2}}=?, \quad\left(A^{T} A\right)^{-1} A^{T}=?, \quad A^{T}\left(A A^{T}\right)^{-1}=?
\end{gathered}
$$

