Homework 7

<u>Due Date</u>: Monday, Dec 7^{th} , 2020 at 11:59pm

1. Nilpotent Matrices

(PTS:0-2) Consider the matrix

	0	1	0	0	0	0	0
	0	0	1	0	0	0	0
	0	0	0	1	0	0	0
N =	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	1	0	0
	0	0	0	0	0	1	0

What is N^2 ? What is N^3 ? What is N^4 ? What is the characteristic polynomial of N? What are the eigenvalues of N?

2. Jordan Form

Consider a matrix $A \in \mathbb{R}^{3 \times 3}$ with the form

	[λ_1	a	0	Γι			-1
A =	v_1	w_1	v_2	0	λ_1	0	v_1	w_1	v_2	
				0	0	λ_2	LI			

- (PTS: 0-2) What is the characteristic polynomial of A? Write an expression for A^{-1} .
- (PTS: 0-2) Write an expression for the Jordan form of $A = PJP^{-1}$, i.e. find P and J. What is the 1st order generalized eigenvector associated with λ_1 ? What is the 2nd order generalized eigenvector associated with λ_1 ? What happens when to the Jordan form when $a \to \infty$? What about when $a \to 0$?

3. Positive Definite Matrices and Congruent Transformations

- (PTS: 0-2) Show that if $K \in \mathbb{R}^{n \times n}$ is skew-symmetric, i.e. $K^T = -K$, then $\mathbf{x}^T K \mathbf{x} = 0$ for all $x \in \mathbb{R}^n$.
- (PTS: 0-2) Consider the quadratic expression $\mathbf{x}^T A \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. Show that for all A, there exists a matrix $B \in \mathbb{R}^{n \times n}$ with $B^T = B$ such that

$$\mathbf{x}^T B \mathbf{x} = \mathbf{x}^T A \mathbf{x}.$$

• (PTS: 0-2) Show that if $A \in \mathbb{R}^{n \times n}$ is positive definite then $Q = P^T A P$ is positive semidefinite for any $P \in \mathbb{R}^{n \times m}$.

4. Eigenvectors of Symmetric and Skew Symmetric Matrices

- (PTS: 0-2) Show that the eigenvalues of symmetric matrices are always real. Show that the eigenvectors of symmetric matrices are orthogonal.
- (PTS: 0-2) Show that the eigenvalues of skew-symmetric matrices are always imaginary. Show that the eigenvectors of skew-symmetric matrices are orthogonal.

5. Continuous vs. Discrete Time Stability

(PTS: 0-2) Let $\rho(M)$ represent the set of eigenvalues or *spectrum* of M. Show that if $\operatorname{Re}(\lambda) < 0$ for all $\lambda \in \rho(A)$, then $|\mu| < 1$ for all $\mu \in \rho(e^{A\Delta t})$.

6. Vector Fields and Stability

For each of the following matrices,

$$A = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}, \qquad A = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix}$$

consider the system differential equation

$$\dot{x} = Ax$$

• (PTS: 0-2 (for each)) What are the eigenvalues of e^{At} ? Is the system stable? Sketch the vector field for each system labeling the eigenvectors and show a sample trajectory.

7. Singular Value Decomposition

• (PTS:0-4) Show that any matrix $A \in \mathbb{R}^{m \times n}$ can be written in the form

$$A = U \begin{bmatrix} \Sigma & 0\\ 0 & 0 \end{bmatrix} V^*$$

for $U \in \mathbb{C}^{m \times m}$, $U^*U = I$ and for $V \in \mathbb{C}^{n \times n}$, $V^*V = I$, $\Sigma \in \mathbb{R}^{k \times k}$ diagonal and $\Sigma \succ 0$ where k is the rank of A. Let

$$U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}, \qquad V = \begin{bmatrix} V_1^* \\ V_2^* \end{bmatrix}$$

where $U_1 \in \mathbb{C}^{m \times k}$, $U_2 \in \mathbb{C}^{m \times (m-k)}$, $V_1 \in \mathbb{C}^{n \times k}$, $V_2 \in \mathbb{C}^{n \times (n-k)}$. What spaces are spanned by the columns of U_1 , U_2 , V_1 , and V_2 ?

• (PTS:0-2) Write expressions for the following matrices in terms of $U_1, U_2, V_1, V_2, \Sigma$.

$$A^T = ?, \quad , A^{-1} = ?, \quad A^{-T} = ?$$

$$(A^{T}A)^{\frac{1}{2}} = ?, \quad (AA^{T})^{\frac{1}{2}} = ?, \quad (A^{T}A)^{-1}A^{T} = ?, \quad A^{T}(AA^{T})^{-1} = ?$$