AA/EE/ME 510-Linear Systems Theory - Autumn 2020

Homework 8

Due Date: Sunday, Dec $13^{\text {th }}$, 2020 at $11: 59 \mathrm{pm}$

1. Homogeneous transformations

- (PTS: 0-2) From the diagram, write down the homogeneous transformations $g_{A B}, g_{B C}$, $g_{C D}$.
- (PTS: 0-2) Use these three homogeneous transformations to write $g_{D A}$. Then use $g_{D A}$ to compute $g_{A D}$.

2. Forward Kinematics

Use the product of exponentials to compute the forward kinematics for each manipulator.
(a) SCARA manipulator

Figure 3.3: SCARA manipulator in its reference configuration.

- (PTS: 0-2) Write the homogeneous transformation for each joint for $l_{0}=1, l_{1}=1$, and $l_{2}=1$.
- (PTS: 0-2) Compute $g_{S T}$ using the product of exponentials formula.

(b) Elbow Manipulator

Figure 3.4: Elbow manipulator.

- (PTS: 0-2) Write the homogeneous transformation for each joint for $l_{0}=1, l_{1}=1$, and $l_{2}=1$.
- (PTS: 0-2) Compute $g_{S T}$ using the product of exponentials formula
- $Q R$-Decomposition

$$
A=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
A_{1} & A_{2} & A_{3} & A_{4} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
1 & 0 & 0 & -1
\end{array}\right]
$$

- (PTS: 0-2) Use the Gram-Schmidt process on the columns of A to compute a $Q R$ factorization of A
- (PTS: 0-2) Use Householder reflections to compute a $Q R$-factorization of A
- $L U$ - Decomposition

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]
$$

(PTS: 0-2) Use elementary matrices to compute an $L U$-decomposition of A.

4. Circulant Matrices

Consider the shift matrix

$$
P=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and the circulant matrix (for the vector $\left[\begin{array}{llllll}c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{4} c_{5}\end{array}\right]$).

$$
C=\left[\begin{array}{llllll}
c_{0} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{5} & c_{4} & c_{3} & c_{2} \\
c_{2} & c_{1} & c_{0} & c_{5} & c_{4} & c_{3} \\
c_{3} & c_{2} & c_{1} & c_{0} & c_{5} & c_{4} \\
c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & c_{5} \\
c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0}
\end{array}\right]
$$

(a) (PTS: 0-2) Check that the columns of V are right eigenvectors of P. (You can just check

3 of them.)

$$
V=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
V_{1} & \cdots & V_{6} \\
\mid & \cdots & \mid
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & e^{\frac{i 2 \pi(1 \times 1)}{6}} & e^{\frac{i 2 \pi(1 \times 2)}{6}} & e^{\frac{i 2 \pi(1 \times 3)}{6}} & e^{\frac{i 2 \pi(1 \times 4)}{6}} & e^{\frac{i 2 \pi(1 \times 5)}{6}} \\
1 & e^{\frac{i 2 \pi(2 \times 1)}{6}} & e^{\frac{i 2 \pi(2 \times 2)}{6}} & e^{\frac{i 2 \pi(2 \times 3)}{6}} & e^{\frac{i 2 \pi(2 \times 4)}{6}} & e^{\frac{i 2 \pi(2 \times 5)}{6}} \\
1 & e^{\frac{i 2 \pi(3 \times 1)}{6}} & e^{\frac{i 2 \pi(3 \times 2)}{6}} & e^{\frac{i 2 \pi(3 \times 3)}{6}} & e^{\frac{i 2 \pi(3 \times 4)}{6}} & e^{\frac{i 2 \pi(3 \times 5)}{6}} \\
1 & e^{\frac{i 2 \pi(4 \times 1)}{6}} & e^{\frac{i 2 \pi(4 \times 2)}{6}} & e^{\frac{i 2 \pi(4 \times 3)}{6}} & e^{\frac{i 2 \pi(4 \times 4)}{6}} & e^{\frac{i 2 \pi(4 \times 5)}{6}} \\
1 & e^{\frac{i 2 \pi(5 \times 1)}{6}} & e^{\frac{i 2 \pi(5 \times 2)}{6}} & e^{\frac{i 2 \pi(5 \times 3)}{6}} & e^{\frac{i 2 \pi(5 \times 4)}{6}} & e^{\frac{i 2 \pi(5 \times 5)}{6}}
\end{array}\right]
$$

(b) (PTS: 0-2) What are the eigenvalues associated with each eigenvector? Which eigenvectors are conjugate pairs of each other?
(c) (PTS: 0-2) Show that the circulant matrix C can be written as

$$
C=c_{0} I+c_{1} P+c_{2} P^{2}+c_{3} P^{3}+c_{4} P^{4}+c_{5} P^{5}
$$

(d) (PTS: 0-2) Show that the columns of V are orthogonal to each other, ie. $V_{i}^{*} V_{j}=0$ for $i \neq j$ where V_{i} and V_{j} are columns of V. What does this say about V^{-1} ?
(e) (PTS: 0-2) Use the spectral mapping theorem to compute the eigenvalues of C.
(f) (PTS: 0-2) Write out a diagonalization of C.

