JORDAN FORM - GENERALIZATION OF diag gonallzation any matrix
diagonalizable:

$$
\begin{aligned}
A= & P D P^{-1} \\
& {\left[\begin{array}{c}
v_{1} \cdots v_{n} \left\lvert\,\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & - \\
0 & \lambda_{n}
\end{array}\right]\left[v_{1} \ldots v_{n}\right.\right.
\end{array}\right]^{-1} }
\end{aligned}
$$

general
matrix:
this shows up
$\left.\begin{array}{l}\begin{array}{l}\text { this shows up } \\ \text { be cause of } \\ \text { - repeated eigenvalues }\end{array}\end{array}\left[\begin{array}{ccc}J_{1} & & 0 \\ 1 & J_{2} \\ 0 & & 0\end{array}\right] \quad \begin{array}{l}J_{1}=\left[\begin{array}{cc}\lambda_{1} & 1\end{array}\right] \\ 0\end{array}\right]$
$\left.\begin{array}{l}\begin{array}{l}\text { his shows up } \\ \text { be cause of } \\ \text { - repeated eigenvalues }\end{array}\end{array}\left[\begin{array}{ccc}J_{1} & & 0 \\ 1 & J_{2} \\ 0 & & 0\end{array}\right] \quad \begin{array}{l}J_{1}=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & 1\end{array}\right] \\ J_{2}=\end{array}\right]\left[\begin{array}{cc}\lambda_{2} & 1\end{array}\right]$
this shows up
eiguvectors \rightarrow live in subspaces that are in 2D or higher
\rightarrow ambiguity in what eigenvectors are

- nilpotent matrices

Nilpotent Matrix: $\quad A \in \mathbb{R}^{1 \times n}$
$A^{k}=0 \longrightarrow n_{0}$ analog $\bar{\omega}$ numbers
EX.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0^{2} \\
0 & 0 & 0
\end{array}\right]^{2}=\left[\begin{array}{lll}
0 & 1 讠 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \leftarrow} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]^{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array} \left\lvert\,\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right.\right.}
\end{aligned}
$$

Ex not nilpotent $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
Ex $\quad\left[\left.\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array} \right\rvert\,\right.$
Ex $\quad\left(P\left[\begin{array}{cc}0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] P^{-1}\right)^{2}=P\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right] P^{-1} P\left[\begin{array}{cc}0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right] P^{-1}$

$$
\begin{aligned}
& =P\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 \\
0 & 0 & 0
\end{array} P^{-1}\right. \\
\left(P\left[\begin{array}{lll}
0 & 0 \\
0 & 0 \\
0 & 0 & 0
\end{array} P^{-1}\right)^{3}\right. & =P O P^{-1}=0
\end{aligned}
$$

What are the eiqunvectors of a nilpotent matrix?
Ex, $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array} \left\lvert\,\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=0<\left[\left.\begin{array}{l}1 \\ 1 \\ 0\end{array} \right\rvert\, * \lambda=0 \quad x\right.\right.\right.$
$\rightarrow\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}k \\ \alpha \\ k\end{array}\right]=\left[\begin{array}{l}x \\ t \\ 0\end{array}\right] \quad$ only possible eigenvalue

$$
\begin{aligned}
& \operatorname{Cs} p\left[\left.\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} \right\rvert\, P^{-1}=[0]\right. \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array} \left\lvert\,\left[\begin{array}{ll}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{cl}
x_{2} \\
x_{3} \\
0
\end{array}\right] \quad \lambda=0\right.\right.} \\
& x_{2}=0 \cdot x_{2} \\
& x_{3}=0 \cdot x_{2} \\
& x_{3}=0
\end{aligned}
$$

$\lambda=0 \quad v=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \leftarrow \begin{gathered}\text { only the } \\ \text { ever }\end{gathered}$
only evil $\downarrow\left|\left|\begin{array}{l}0 \\ 0\end{array}\right|\right.$ ever

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\left|\begin{array}{l}
1 \\
0
\end{array}\right|=\left|\begin{array}{l}
0 \\
0 \\
0
\end{array}\right|\right.
$$

characteristic

$$
\left\{\begin{array}{c}
-\lambda_{1}^{-1}-\lambda_{2}+ \\
s-\lambda_{2}+\lambda_{3} \\
s-\lambda_{3}
\end{array}\right) \Rightarrow\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)\left(s-\lambda_{3}\right)
$$

A repeated eigenvalue of 0 , but only 1 eigenvector wanted to construct a basis for the space from eigenvectors but we didn't have evough of them - needed 3 only have what are eigenvalues of

$$
A=\left[\begin{array}{ll}
\lambda & 0 \\
\lambda & 1 \\
0 & 1 \\
0 & \lambda
\end{array}\right] \quad \operatorname{det}\left[\begin{array}{ccc}
s & -\lambda-1 & 0 \\
0 & 0 & -\lambda
\end{array}\right]=(s-\lambda)^{3}
$$

repeated eval of $\lambda \ldots$
what is the eigenvector associated $\omega \underline{\lambda} \rightarrow\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]^{\prime}$

$$
\begin{aligned}
& A\left|\begin{array}{ll}
1 \\
8
\end{array}\right|=\left[\begin{array}{cc}
\lambda & 1 \\
0 & 0 \\
0 & \lambda
\end{array} \left\lvert\,\left[\begin{array}{l}
1 \\
0
\end{array} \left\lvert\,=\left[\left.\begin{array}{l}
1 \\
0 \\
0
\end{array} \right\rvert\,\right.\right.\right.\right.\right. \\
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array} \left\lvert\, \in N(\underline{\lambda I-A})=N\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right.\right)} \\
& \uparrow \\
& \text { only has a } \\
& N\left((\lambda I-A)^{2}\right) \quad 11 \text { nullspace }
\end{aligned}
$$

if an eigavalue λ is repeated k times... and $\operatorname{din} N((\lambda I-A))<k$
then we can look at vectors in

$$
N\left((\lambda I-A)^{l}\right) \text { for } l \leq k
$$

vectors in this nullspace are called generalized eigenvector ss
for $l=1$: first order generalized eves or just eigenvectors
for $l=2$: Lad order generalized evecs...
for $\ell=3$: 3 rd order etc..
if no repeated eiquvalues...

$$
\begin{aligned}
& X_{A}(s)=\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \cdots\left(s-\lambda_{n}\right) \\
& A\left(\lambda_{i} I-A\right) \rightarrow \text { has to be at least }_{1} \text { dimension } \\
& \lambda \frac{\lambda_{I}}{\operatorname{det}\left(\frac{\lambda_{I}-A}{}-A\right)}=0
\end{aligned}
$$

Jordem Form:

$$
A=\left[\begin{array}{lll}
v_{1} & \ldots & \\
& & \\
0 & & J_{p}
\end{array}\right]\left[\begin{array}{lll}
J_{1} & & 0 \\
& \ddots & \\
0 &
\end{array}\right]
$$

$J_{i}=\left[\begin{array}{ccc}\lambda_{i} & 1 & 0 \\ 0 & \ddots & 1 \\ 0 & & \lambda_{i}\end{array}\right]$ for each wordan wan find at Jordan least 1 eigenvector v_{i}
then find generalized eigenvectors for ea. repeated cighvalue $N\left(\left(\lambda_{i} I-A\right)^{l}\right)$

$$
w_{1}, u_{1} \text {, etc... }
$$

regular onder 3 ord
order
elige veetor vector eigector

$$
\begin{aligned}
& N\left((\lambda, I-A)^{2}\right) \\
& \left|\begin{array}{l}
0 \\
1 \\
0 \\
j \\
j
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}, w_{1}, u_{1} \\
& N\left((\lambda, I-A)^{3}\right)
\end{aligned}
$$

Characteristic polynomial

$$
\begin{aligned}
X_{A}(s) & =s^{n}+\alpha_{n-1} s^{n-1}+\cdots+\alpha_{1} s+\alpha_{0} \\
& =\left(s-\lambda_{1}\right)^{k_{1}}\left(s-\lambda_{2}\right)^{k_{2}} \cdots\left(s-\lambda_{p}\right)^{k_{p}}
\end{aligned}
$$

k_{i} is \# of times λ_{i} is repeated as an l_{1} is $\operatorname{dim} N\left(\lambda_{i I} \underline{-A}\right)$

$$
\begin{aligned}
& \operatorname{dmN}\left(\lambda_{i} I-A\right)=l_{i} \leq k_{i} \\
& \operatorname{ex.}^{\prime} \quad \\
& \operatorname{dimN}\left(\left(\lambda_{i}-A\right)^{2}\right)=5 \\
& \left.\operatorname{dimN}\left(\lambda_{i} I-A\right)^{3}\right)=6
\end{aligned}
$$ eigenvalue

Minimal polynomial:

$$
\left(s-\lambda_{1}\right)^{k_{1}-l_{1}} \ldots\left(s-\lambda_{p}\right)^{k_{p}-l_{p}}
$$

l_{i} : \# of regular eigenvector for λ_{i}
$k_{i}-l_{i}: \#$ of generalized eigenvedurs for λ_{i}

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{ccc}
v_{1} & w_{1} & u_{1}
\end{array}\right.\right]\left[\begin{array} { c c c }
{ \lambda _ { 1 } } & { 1 } & { 0 } \\
{ 0 } & { \lambda _ { 1 } } \\
{ 0 } & { \lambda _ { 1 } } & { \lambda _ { 1 } }
\end{array} \left|| v _ { 1 } , w _ { 1 } u _ { 1 } | ^ { - 1 } \left[w_{1} \mid\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{1}+\lambda_{1} u_{1}=\quad\left[\begin{array}{l}
0 \\
\lambda_{1}
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \frac{A v_{1}=\lambda_{1} v_{1}}{\substack{\text { 1storder } \\
\text { gen }}} \frac{A w_{1}=v_{1}+\lambda_{1} w_{1}}{2 n d \text { order }} \frac{A u_{1}=\lambda_{1} u_{1}+w_{1}}{3 r d \text { order }} \\
& \left(A-\lambda_{1} I\right) v_{1}=0 \\
& \left(A-\lambda_{1} I\right) \omega_{1}=v_{1} \Rightarrow\left(A-\lambda_{1} I\right)^{2} w_{1}=0 \\
& \left(A-\lambda_{1} I\right) u_{1}=\omega_{1} \Rightarrow\left(A-\lambda_{1} I\right)^{2} u_{1}=v_{1} \\
& \left(A-\lambda_{1} I\right)^{3} u_{1}=0
\end{aligned}
$$

generalized eighvectors conve in
chains $u_{1} \rightarrow w_{1} \rightarrow v_{1}$
Relationships between leff \&̀ right gen. evecs diagnalizable
case: $\quad\left[v_{1} \cdots v_{n} \left\lvert\,\left[\left.\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array} \right\rvert\, \begin{array}{c}-q_{1}^{\top} \\ i_{n}^{\top}-\end{array}\right]\right.\right.$
lett $\dot{\varepsilon}$ right evers come in pairs

$$
v_{1}, q_{1}^{\top} \quad \cdots \quad v_{n}, q_{n}^{\top}
$$

Jordan
form case:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
v_{1} & w_{1} & u_{1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 1 \\
0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{l}
-\varepsilon_{1}^{\top} \\
-p_{1}^{T}
\end{array}\right] \longleftarrow{ }^{\text {3rdjer }}} \\
& \text { Istorder } \\
& \text { lett evec } \\
& \text { forter 2nd 3rd } \\
& \text { rightgen evec }
\end{aligned}
$$

$$
\begin{aligned}
& s_{1}^{\top}\left[\begin{array}{ccc}
1 & 1 & 1 \\
v_{1} & w_{1} & u_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & A_{1} & 1 \\
0 & 0 & \lambda_{1}
\end{array}\right]\left[\begin{array}{l}
-q_{1}^{\top}- \\
-p_{1}^{\top} \\
-s_{1}
\end{array}\right] \\
& {\left[\begin{array}{llll}
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
0 & 0 & \lambda_{1}
\end{array}\right]=\lambda_{1} s_{1}^{\top}} \\
& P_{1}^{\top}\left[\begin{array}{ccc}
1 & 1 & 1 \\
v_{1} & w_{1} & u_{1} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 1 \\
0 & 0 & \lambda_{1}
\end{array}\right]\left[\begin{array}{l}
-q_{1}^{\top}- \\
-p_{1}^{\top} \\
-s_{1}^{\prime}
\end{array}\right] \\
& {\left[\begin{array}{llll}
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
0 & \lambda_{1} & 1
\end{array}\right]=\lambda_{1} p_{1}^{\top}+s_{1}^{\top}}
\end{aligned}
$$

switching order of evecs

leughth
$\left.\begin{array}{l}\begin{array}{l}\text { of gen } \\ \text { evee }\end{array}\end{array} v_{1} \omega_{1}\right]\left[\begin{array}{cc}\alpha_{1} & 0 \\ 0 & \beta_{1}\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 1 \\ 0 & \lambda_{1}\end{array}\left|\begin{array}{cc}\alpha_{1} & 0 \\ 0 & \beta_{1}\end{array}\right|\left[\begin{array}{c}-\varepsilon_{1}^{\top}-1 \\ -p_{1}{ }^{2}\end{array}\right]\right.$

$$
\left[\begin{array}{cc}
\lambda_{1} \alpha_{1} \frac{1}{1} & \alpha_{1} / \beta_{1} \\
0 & \lambda_{1} \beta_{1} / \beta_{1}
\end{array} \quad\left[\begin{array}{cc}
\lambda_{1} & \alpha_{1} / \beta_{1} \\
0 & \lambda_{1}
\end{array}\right]\right.
$$

Spectral Mapping Thm:

$$
A=P J P^{-1} \Rightarrow A^{k}=P J^{k} P^{-1}
$$

diagonal: $D^{k}=\left|\lambda_{1}^{k}{ }^{-}{ }^{-} \lambda_{n}^{k}\right|$
Jorden: $\left|\begin{array}{c}J^{k} \\ \jmath\end{array}\right|$
for aplytry polynomial functions $f\left(J_{i}\right) \quad f(s)$

$$
\begin{aligned}
& J_{i}=\left|\begin{array}{cc}
\lambda_{i} & 1 \\
\ddots & 0 \\
\ddots & -1 \\
0 & \lambda_{i}
\end{array}\right| \quad n_{i} \quad J_{i} \in \mathbb{R}^{\Lambda_{i} \times n_{i}} \\
& f\left(J_{i}\right)=\left[\begin{array}{cccc}
f\left(\lambda_{i}\right) & f^{\prime}\left(\lambda_{i}\right) & \frac{f^{\prime \prime}\left(\lambda_{i}\right)}{2} & \nearrow \\
n_{i} & \frac{f^{\left(r_{i}\right)}\left(\lambda_{1}\right)}{\left(n_{-1}\right)!} \\
0 & \ddots & \frac{f^{\prime \prime}\left(\lambda_{i}\right)}{2} \\
0 & & f^{\prime}\left(\lambda_{i}\right) \\
& & & f\left(\lambda_{i}\right)
\end{array}\right] \\
& f^{\prime}\left(\lambda_{i}\right)=\left.\frac{\partial f}{\partial s}\right|_{\lambda_{i}} f^{\prime \prime}\left(\lambda_{i}\right)=\left.\frac{\partial^{2} f}{\partial s^{2}}\right|_{\lambda_{i}} \text { etc... } \\
& J_{i}^{k}=\left[\begin{array}{ccc}
\lambda_{i}^{k}\binom{k}{1} \lambda_{i}^{k-1} & \binom{k}{n_{i}-1} \lambda_{1}^{k-\left(n_{i}-1\right)} \\
& \ddots & \left(\begin{array}{l}
k
\end{array}\right) \lambda_{i}^{k-1} \\
0 & \lambda_{i}^{k}
\end{array}\right]
\end{aligned}
$$

Summary:
it you have repeated cigenvalres...

- eigen subspaces are grater than
- nilpotent matrix
structure added into an eigen subspace

$$
\lambda_{i} I \longrightarrow \lambda_{i} I+N_{i}
$$

- generalized cues $u_{i} \longrightarrow$ creates have different u_{i} generalized eigenvectors orders depending on the power l_{i}

$$
\begin{aligned}
& \text { on the power } l_{i} \\
& \text { st. } u_{i} \in N\left(\left(\lambda_{i} I-A\right)^{l_{i}}\right) \\
& \text { gen eves cane in chair }
\end{aligned}
$$

- gen eves come in chains...
- chains are reversed for leff \&̀ night gen evecs.
- Jordan Form

$$
A=P J P^{-1} \quad J=\left|\begin{array}{l}
J_{1} \\
\\
\\
J_{p}
\end{array}\right| \quad J_{i}=\left|\begin{array}{cc}
x_{i} & 0 \\
0 & \ddot{d}_{i}^{\prime}
\end{array}\right|
$$

Rest of Quarter:

- Linear vector fields $\varepsilon_{1} e^{A t}$
- SUD
- other decompositions
- polar \rightarrow sym, skew sym matrices
- QR - gram schmidt
- LU
- Positive definite matrices (congruent transformations) semi definite programing
- Schur complements
- sparsity \rightarrow convex relaxation

Numerics for CUX

- gradient descent
- conjugate gradient descent
- simplex method
- interior pt. methods
vs. rotations
SLURP gimbal lock
- affine transtombthan
homogeneous trans.
$\mathrm{so}(3)$: rotation 5 Lie group So (3): skansym Lie algebra

$$
\operatorname{se}(3)=\left[\begin{array}{l|l}
R & p \\
\hline & 1
\end{array}\right]
$$

rotations \&े trans.

$$
\left|\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right|\left|\begin{array}{l}
x \\
1
\end{array}\right|=\left|\begin{array}{c}
R x+P \\
1
\end{array}\right|
$$

dual quaternions

- Matrix group theory
\Rightarrow rotations $\operatorname{so}(n)$, $\operatorname{su}(n)$ $\left.\begin{array}{l}\text { Lie group } \\ \text { lie alga }\end{array}\right\} \rightarrow$ robotics
$\left[\begin{array}{c}\text { Markov chains } \\ \text { MDP's } \\ \text { Graphs } \\ \text { Laplacian }\end{array}\right]$

Householder reflections

