Topics

- Symmetric / Skew sym
- Helmholtz decamp (linear vecfidds)
- complex \#'s us. matrices
- Polar decomposition
- Singular value decomposition

Symmetric Matrices Properties
$S \in \mathbb{R}^{n x^{n}}$
symmetric: $S=S^{\top}$

$$
\begin{aligned}
& H \in \mathbb{C}^{n \times n} \quad H=H^{*} \text { hermitian } . ~
\end{aligned}
$$

hermitian
Connection w' vector fidds

$$
\dot{x}=h(x)
$$

when is $h(x)=\frac{\partial f^{\top}}{\partial x}$?
"when can you think of \dot{x} as pointing up/down some surface."
Necessary cond: based on $2 n d$ derivative

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{n}(x)
\end{array}\right.\right]=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right] \\
& \frac{\partial h}{\partial x}=\left[\begin{array}{lll}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial f}{\partial x_{0} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{x_{2}} \partial h_{n}}
\end{array}\right] \quad \frac{\partial h}{\partial x}=\frac{\partial h^{\top}}{\partial x} \\
& \begin{array}{l}
\text { symuetic since } \\
\frac{\partial^{2} f}{\partial x_{j} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
\end{array} \quad \frac{\partial h_{i}}{\partial x_{j}}=\frac{\partial h_{j}}{\partial x_{i}}
\end{aligned}
$$

Ex. linear case

$$
\begin{array}{ll}
\dot{x}=A x \quad h(x)=A x & ? \\
\frac{\partial h}{\partial x}=\frac{\partial}{\partial x}(A x)=A & \frac{\partial h}{\partial x}=\frac{\partial h^{\top}}{\partial x}
\end{array}
$$

"linear sys $\bar{\omega}$ symmetric A
\Rightarrow flow up or down a surface" potential flow $\left(f(x)=\frac{1}{2} x^{\top} A x\right)$ potential function
Skew Symmetric Matrices
$k \in \mathbb{R}^{n \times n}$

$$
k=-k^{\top}
$$

shew symmetric

$$
k \in \mathbb{C}^{n \times n}+
$$

$$
k=-k^{*}
$$

skew hermitian
For $k \in \mathbb{R}^{n \times n}$

Properties

- purely imaginary cigenvalues
- orthogonal eigenvectors

Diagonalize imaginary

$$
k=u D u^{6}
$$

$$
u^{\star} u=I \quad \operatorname{det}(u)=1
$$

$\left[\left.\begin{array}{c}a-b \\ 0\end{array}+a-b_{i} \right\rvert\,\right) \rightarrow\left(\begin{array}{cc}a-b \\ b & a\end{array}\right) \quad U$ and R are related (previous lecture)

$$
\begin{aligned}
& k=-k^{T} \\
& K=u D u^{\downarrow} \\
& =u\left[\begin{array}{ccc}
w_{1} i & 0 \\
c & -w_{1} i & \\
& & \ddots
\end{array}\right] u^{*}=R\left[\begin{array}{ccc}
0 & -w_{1} & \\
\omega_{1} & 0 & \\
& & \ddots
\end{array}\right] R^{\top} \\
& R^{\top} R=I \quad \operatorname{det}(R)=1
\end{aligned}
$$

For $k \in \mathbb{R}^{n \times n} k=-k^{\top} \Rightarrow k_{i i}=0 \longleftarrow$
(For $k \in \mathbb{C}^{n \times n} k=-k^{*} \Rightarrow \operatorname{Re}\left(k_{i i}\right)=0$)

$$
K=\left[\begin{array}{ccc}
0 & & k_{i n} \\
& \ddots & \ddots \\
-k_{i n} & \ddots & 0
\end{array}\right]
$$

Fact

$$
\begin{aligned}
& x^{\top}(k x)=\sum_{i j} x_{i} k_{i j} x_{j} \\
&=\sum_{i>j} x_{i} k_{i j} x_{j}+\sum_{i} x_{i} k_{i} x_{i}^{0}+\sum_{j>i} x_{i} k_{i j} x_{j} \\
&=\sum_{i>j} x_{i} x_{j}\left(k_{i j}+k_{j i}^{0}\right) \quad \sum_{i>j} x_{j} k_{j i} x_{i} \\
& x^{\top} k x=0
\end{aligned}
$$

$K x$ always h to x for any $x \ldots$... Ex. $k \in \mathbb{R}^{2 \times 2}$

$$
K=\left[\begin{array}{cc}
0 & -w \\
\omega & 0
\end{array}\right] \leftarrow
$$

Solution:

$$
x(t)=e^{k t} x(0)
$$

Note: ω_{i} is rate of rotation

$$
\begin{aligned}
& =u\left[\begin{array}{ccc}
e^{i \omega} \omega_{0} \\
0 & e^{-i \omega t} t \\
& \ddots
\end{array}\right] u^{+} \\
& =R\left[\begin{array}{l}
\cos (\omega, t)-\sin (\omega, t) \\
\sin (\omega, t) \cos (\omega, t)
\end{array}\right] R^{\top}
\end{aligned}
$$

Summary
$\dot{x}=k x$ for $k=-k^{T}$ rotational vector ie. $e^{k t}$ rotation matrix
Detour (preview of robotics...)
Matrix Group Theory
formalization of idea of symmetries
G : group $\quad . G_{2} \in G \Rightarrow G_{1} \times G_{2} \in G$
X : operation
(Gr needs to have identity element, on. element Ex. reflections, permutations needs to inverse.

$$
M=\left|\begin{array}{lll}
1 & -1 & \\
\hline
\end{array}\right| \quad M=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \Leftarrow \begin{gathered}
\text { matin } \\
\text { grans }
\end{gathered}
$$

Matrices in these groupslare isolated in the vector space of ruatrices...

Sets of matrices also have a vector interpretation you can think about ora manifold interpretation perturbing a matrix

$$
M+\Delta M \leqslant
$$

there are some matrix groups where the elenals are not isolated.
ie. For ea. element in the group, there wee other elements in that group in any ε - neighborhood in the vector space of matrices $x_{1}+\rightarrow$ rings
\Rightarrow Matrix grep that is also a manifold or " surface"

Group operations:

$$
x: I,(\cdot)^{-1}
$$

$$
t=0 \text {, subtadion }
$$

Galios
\Rightarrow Lie groups: groups that are also
"continuous groups" manifolds
Ex rotation

for a element of scalar $\quad \operatorname{det}\left(M_{1} M_{2}\right)=\operatorname{det}\left(M_{1}\right) \operatorname{det}\left(M_{2}\right)$ a Lie group

$$
\downarrow \downarrow=1
$$

ex. rotations
there are other $R+\Delta t B \rightarrow$ could elements within be a rotation a neighborhood structure an B?
what if B is an element of the group?

$$
\begin{aligned}
& R+\Delta t R^{\prime} \quad R R^{\prime} \in S O(n) \\
& \left(R^{T}+\Delta t R^{\prime}\right)^{\prime}\left(R+\Delta t R^{\prime}\right) \\
& \frac{R^{\top} R}{\frac{I}{I}}+\Delta t R^{\prime \top} R+\Delta t R^{\top} R^{\prime}+\Delta t^{2} R^{R^{\top} R^{\prime}} \\
& I\left(1+\Delta t^{2}\right)+\Delta t R^{r} R+\Delta t R^{\top} R^{1}
\end{aligned}
$$

$R+\Delta t B$ most B bake us off Me sphere
$R+\Delta t K$
\uparrow \& skew symmetric
skew symmetric matrices are infinitesimal rotation
Lie Group \rightarrow Lie Algebra
symmetry instanteweous symmetry
infinitesimal
ex. Rotations
skew symmetric matrices

$$
\begin{aligned}
& R \in S O(n) \quad k \in \Delta o(n) \\
& R=e^{k} \quad \stackrel{e^{(\cdot)}}{\rightleftarrows} k
\end{aligned}
$$

"creating a rotation by takily infinitesimal rotating steps
ex. rotations/traus lions twists Robotics homogeneous transformations

$$
G \in S E(n) \quad e^{(\cdot)} \operatorname{Sc}(n)
$$

Back to $\dot{X}=A X \ldots A \in \mathbb{R}^{n \times n}$ A not symor skew sym

Note: need to analyze both to getter to determine stability

any $A \in \mathbb{R}^{n \times n}$

$$
A=\frac{1}{2}\left(A+A^{\top}\right)+\frac{1}{2}\left(A-A^{\top}\right)
$$

average between a matrix and its transpose
diff between a native and its transpose

$$
=S+k
$$

for an $S=S^{\top}$ is $k=-k^{\top} \cdots$
S is "orthogonal" to $K \ldots$

$$
\begin{aligned}
& \langle S, k\rangle=? \quad\langle S, k\rangle=\sum_{i j} S_{i j} k_{i j}=\operatorname{Tr}\left(S^{\top} k\right) \\
& \langle s, k\rangle=\sum_{i j} S_{i j} k_{i j}=\sum_{i>j} S_{i j} k_{i j}+\sum_{i} S_{i i} k_{i}{ }^{0} \\
& +\sum_{j>i} s_{i j} k_{i j} \\
& =\sum_{i>j} S_{i j} k_{i j}+s_{j i} k_{j i} \\
& =\sum_{i>j} S_{i j}\left(k_{i j}-k_{i j}^{0}\right)=0 \\
& {\left[\begin{array}{ccc}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]}
\end{aligned}
$$

Summary

$$
\begin{aligned}
& S=\left\{s \mid s=s^{T} s \in \mathbb{R}^{n \times n}\right\} \\
& \mathbb{R}=\left\{k \mid k=-k^{\top} \quad k \in \mathbb{R}^{n \times n}\right\}
\end{aligned}
$$

$$
\mathbb{R}^{n \times n}=S \mathbb{A}^{\frac{1}{n}} k
$$

$A=\frac{1}{2}\left(A+A^{\top}\right)^{d}+\frac{1}{2}\left(A-A^{\top}\right)$
Aralogasly...
$\sin (\alpha) \cos (\beta)$
$=\frac{1}{2} \sin (\alpha+\beta)+\frac{1}{2} \sin (\alpha-\beta)$
$-e^{i \theta}=\cos \theta+\sin \theta i$
Side Note:
Matrix nome
Vector... operator nones
Frobenius
induced
$|A|_{F}=\left(\sum_{i j} A_{i j}\right)^{1 / 2}$
"vector 2 -nom"

$$
|A|_{F}=\sqrt{\left\langle A_{1} A\right\rangle}
$$

- hyperbolic trig functions

$$
\sinh (\theta)=e^{i \theta}-e^{i \theta}
$$

odd, even functions
\rightarrow "vector 1-nom

$$
A=\frac{1}{2}\left(A+A^{\top}\right)+\frac{(}{2}\left(A-A^{\top}\right)
$$

$$
f(x)=f(-x)
$$

$$
f(x)=-f(-x)
$$

ex $\cos (x)=\cos (-x)$

preview $\quad A=P R$ polar decomposition
previen homogeneous rotation translation

$$
\begin{aligned}
& G=\begin{array}{c}
S E(3) \\
\begin{array}{c}
\text { d } \\
\text { rations \& } \\
\text { tamslations }
\end{array}
\end{array} \quad G=\left[\begin{array}{cc}
R & P \\
000 & 1
\end{array}\right] \\
& \text { tamslations }
\end{aligned}
$$ in \mathbb{R}^{3}

$$
\begin{aligned}
& G_{1}=\left|\begin{array}{cc}
R_{1} P_{1} \\
0001
\end{array}\right| \quad G_{2}=\left|\begin{array}{cc}
R_{2} & P_{2} \\
0001
\end{array}\right| \\
& G_{1} G_{2}=\left|\begin{array}{cc}
R_{1} R_{2} & R_{1} P_{2}+P_{1} \\
000 & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
R_{3} P_{3} \\
0001
\end{array}\right)=\left[\begin{array}{cc}
R_{1} & P_{1} \\
000 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{2} & P_{2} \\
000 & 1
\end{array}\right]} \\
R_{3}=R_{1} R_{2} \quad P_{3}=R_{1} P_{2}+P_{1}
\end{gathered}
$$

kronecker products...

