ToPICS:

- PROOFS
- BASES

PROOFS:
"know how everything connects to everything." "
Following a proof: traveling fam A to B
FINDING a proof: seeing a big
classes are ℓ section of the rough and so is homework...

"From the Book" EROS
TECHNIQUES:

1. know a lot of tricks/pattern match \rightarrow get easier \bar{w} practice (memorize it) mare flings around algebraically.
2. Draw a picture: $*$ I pretty much always (geometric intuition) do this. (spatial intartion)
3. Physical/Real world example

Ex vector fields \rightarrow fluids ODES \rightarrow electromagnetic physicists
4. Look for counter examples "try to break the statement" \rightarrow indirect proof if you con't constrict a counter example \Rightarrow that intuition often leads to a proof.

EX $H 1 Q 1 A$ prove $x^{\top} y=|x||y| \cos \theta$ what are we given defy: $x^{\top} y$, law of cosines

$$
x^{\top} y=\sum_{i} x_{i} y_{i}^{?}
$$

- connect triangle $\bar{\omega}$ vectors (oath up θ)
- write a, b, c intens
(1)
trigonanctry triangles
 of x, y

$$
\rightarrow|c|^{2}=|a|^{\frac{1}{2}+|b|^{2}-2|a||b| \cos \theta}
$$

$$
|a|=|x|, b=|y|
$$

Note: extension of Bythag. Them.

$$
|c|=|x-y| \leftarrow
$$

- norms \rightarrow inner products
$\frac{a}{a}$

$$
\begin{aligned}
& \cos \theta=0 \\
& \left|c^{2}=|a|^{2}+|b|^{2}\right.
\end{aligned}
$$

$$
y^{\top} x=|x||y| \cos \theta
$$

Noble: caning up
solution
\Rightarrow Mcaulerky
writing it out..-
should flow from start to finish
Diagrams:

- google drawing
- paverpt/keynote
-ipad.
- photo
-tikz (latex)

Symbols:

Quantifiers: \forall "for all" \exists "flereexists" \exists ! "there

LOGICAL STATEMENTS:
Statement - SAME \rightarrow Contrapositive
if p, then q if $7 q$, then $7 p$

$$
\Rightarrow p \Rightarrow q
$$

" p is sufficient for q "

$$
\neg q \Rightarrow 7 p
$$

(sufficient) "outside q

$$
\Rightarrow \text { outside }
$$

$$
Q\left(\begin{array}{l}
\text { inside } P \\
\Rightarrow \text { inside } q \\
\text { Nor sAME } \uparrow
\end{array}\right.
$$

\rightarrow Inverse $<$ SAME \rightarrow Converse $\binom{$ contrappatived }{ inverse }
if $7 p$, then $7 q$ if q, then p

$$
\neg p \Rightarrow \neg q
$$

$$
q \Rightarrow p
$$

" p is necessary for q
(necessary) "inside q

Statements
that go both ways
p if and only if $q \quad q$ if and only if $p \quad p \longleftrightarrow q$ converse contrapositive statement inverse p iff q

$$
q \text { iffp }
$$

P, q
p, q are logically equivalent
To prove: prove both directions
$1 . \Rightarrow$)(sufficient) prove statement or' contrapositive and
$z \Leftarrow$ necessary pare inverse or converse iff also written as "necessary and sufficient"
More Logic - Truth Tables

Two other Impatuat Techniques

- proof by contradiction $p \vee q$
- proof by induction.

AND statements

q	$\neg p$	
	$p \wedge q$	$q \wedge 7 p$
$7 q$	$7 q \wedge p$	$\neg q \wedge \neg p$

OR STATEMENTS

Proof by contradiction:
direct poof : $p \Longrightarrow q$
contrapositive proof: $7 \varepsilon \Longrightarrow 7 p$
proof by contradiction $p, 7 q \Longrightarrow \perp$
Proof by induction: Examples to cone
want to show q_{k} something for all natural \#s $k=0,1,2, \ldots$
(1) prove q_{0} (base case)
(2) if q_{k}, then $\left.q_{k+1} \quad q_{k} \Rightarrow q_{k+1}\right\}$ proof induction

$$
q_{0} \Rightarrow q_{1} \Rightarrow q_{2} \Rightarrow q_{3} \Rightarrow \cdots \Rightarrow
$$

Ex. finding a counterexample:
consider the p-"nom" for $p=1 / 2 \quad \mid x_{1}=\left(\sum_{i}\left|x_{i}\right|^{1 / 2}\right)^{2}$ show this $1 / 2$ "nom" deesn't satisfy the triangle inequality TS: $\exists x_{1} y$ sst. $|x+y|_{1 / 2} \neq|x|_{1 / 2}+|y|_{1 / 2}$ would noes to be $\forall x, y$ 2D $x=\left\lceil\left[\begin{array}{l}x_{1} \\ x_{2}\end{array} \left\lvert\, y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \quad\right.\right.\right.$ unit balls \quad true or $\forall x, y$

$$
x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] y=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow \begin{gathered}
\text { an } \\
\text { Coulter } \\
\text { Exaupt }
\end{gathered}
$$

$$
x=\left|\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right| \quad y=\left[\left.\begin{array}{l}
y_{1} \\
y_{2}
\end{array} \right\rvert\,\right.
$$

BACK to LINEAR ALGERRA: BASES
vector space V
set of vectors $\left\{v_{i}\right\}_{i=1}^{n}$
$\left.\begin{array}{l}\text { linear } \\ \text { combinations: } \\ v_{1} x_{1}+\cdots+v_{n} x_{n} \\ \underset{\downarrow}{ }=\left[v_{1} \cdots v_{n}\right.\end{array}\right]\left[\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ span of $\left\{v_{i}\right\}_{i=1}^{n}:\left\{y \mid y=V x, x \in \mathbb{R}^{n}\right\} \bar{V}$ coeffs.
vector $\omega \in V$
is linear dep on $\left\{v_{i}\right\}_{i=1}^{n}$
if $\omega \in$ span of $\left\{v_{i}\right\}_{i=1}^{n}$

$$
\Rightarrow \exists x \in \mathbb{R}^{n} \text { sit } \omega=V x
$$

a set of vectors $\left\{v_{i}\right\}_{i=1}^{n}$ is linear dep, if one v_{i} is lin dep on the others
$\Rightarrow \exists x \in \mathbb{R}^{n}, x \neq 0$ sit $V x=0$

a set of vectors $\left\{v_{i}\right\}_{i=1}^{n}$
is linearly independent

$$
\begin{aligned}
& v_{3}=v_{1}+v_{2} \\
& v_{4}=\frac{1}{2} v_{3} \\
& v_{4}=\frac{1}{2} v_{1}+\frac{1}{2} v_{2}
\end{aligned}
$$

if none of the vectors are lindep on ea. of her

$$
\Rightarrow \text { if } V x=0 \Rightarrow \underset{x=\mathbb{R}^{n}}{x}
$$

$$
x \in \mathbb{R}^{n}
$$

Proposition: if $\left[v_{1} \cdots v_{k} v_{k+1}\right]$ lin ind. $\Rightarrow\left[v_{1} \ldots v_{k}\right]$ lin ind.

ASSUME NOT: $\left[v_{1} \cdots v_{k}\right]$ lin dep.

$$
\begin{aligned}
& \Rightarrow \exists x \neq 0 \text { set. }\left[V_{1} \cdots V_{k+1}\right\}_{\underline{x}}=0 \quad x \in \mathbb{R}^{k} \\
& \Rightarrow\left[\frac{v_{1} \cdots+1}{v_{1} v_{k+1}}\right]\left[\begin{array}{l}
x \\
0
\end{array}\right]=\frac{\left[v_{1}-v_{k}\right] x}{0}+V_{1+1}^{0} \\
& \Rightarrow[\underbrace{v_{1} \cdots v_{k} v_{k+1}}]\left[\left.\begin{array}{l}
x \\
0
\end{array} \right\rvert\, \neq 0\right.
\end{aligned}
$$

lin dep X
proving contr positive... if $p \Rightarrow q$ statement $\neg q \Rightarrow \neg p$ contrapositive

BASIS - a set of vectors $\left\{v_{i}\right\}_{i=1}^{n} \subset V$

- $\left\{v_{i}\right\} i_{i=1}^{n}$ span all of V "generates V "
- $\left\{V_{i} i_{i=1}^{n}\right.$ linearly independent

Ex.

all perpendicular

if also length 1 ...
orthonormal \rightarrow a rotation
converts your basis into the standard
$y=\left[\begin{array}{c}\text { cefflot } t_{y} \\ V_{1}-\cdots V_{n} \\ V_{n}\end{array}\right]\left[\begin{array}{ll}x_{1} \\ x_{i}\end{array}\right]$ basis
$\left[\begin{array}{l}x_{1} \\ i \\ x_{n}\end{array} \left\lvert\,=\left[\left.\begin{array}{cc}1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1\end{array} \right\rvert\, \begin{array}{l}1 \\ x_{n} \\ x_{n}\end{array}\right]\right.\right.$

