BASES, COORDINATES,
INVERSES, SIMILARITY TRANSFORMS
vector space $V \quad V_{i} \in V$
$\left\{v_{i}\right\}_{i=1}^{n}$ is basis $\left\{v_{i}\right\}_{i=1}^{n}$ is a basis

- lin ind for V
- span all of V

Fundamental FAct:
any lin ind set has fewer (or equal)
vector is

Completing a basis

Steipintz add elements w_{i} to $\left\{v_{i}\right\}_{i=1}^{m}$ until $\frac{\left\{v_{i}\right\}_{i=1}^{m} \cup\left\{w_{i}\right\} \subset\left\{w_{i}\right\}_{i=1}^{n}}{\text { basis }}$ Exchange LEMMA

BASIS:

- all bases have the same \# of elements

Note: \# of elements in a set = cardinality

$$
\left[\begin{array}{c}
\text { cardinality } \\
\text { of a basis }
\end{array}=\text { dimension of } V\right.
$$

for V
Standard basis for \mathbb{R}^{n}
cols of $I=\left[\left.\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array} \right\rvert\,\right.$

- "largest" (cardinality) lin ind. set
- "smallest (cardinality) spanning set

Coordinates: representations of vectors wot a basis.

$$
\begin{aligned}
& P=\underbrace{\stackrel{\downarrow}{x}=P x^{\prime}}_{\substack{\text { form abasis } \\
P_{1} \ldots P_{n} \\
\text { for } \mathbb{R}^{n}}}=\left[\begin{array}{l}
P_{1} \ldots P_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right] \\
&=P_{1} x_{1}^{\prime}+\cdots+P_{n} x_{n}^{\prime}
\end{aligned}
$$

"Lords are coeffs" x ' is the coordinates of x wot (the cols of) P
Ex. Standard basis

$$
\begin{aligned}
& \mathbb{R}^{3}: P_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \begin{array}{ll}
x & =P x^{\prime} \\
0 & 0
\end{array} \\
&=I x^{\prime} \\
& x=x^{\prime}=\left[\left.\begin{array}{l}
1 \\
2 \\
2
\end{array} \right\rvert\,\right.
\end{aligned}
$$

Ex. Aero
camera on a done

$$
\begin{aligned}
& P=\left[\begin{array}{ccc}
P_{1} & P_{2} & P_{5} \\
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
P_{1} & P_{2} & P_{3}
\end{array}\right] \\
& x=P x^{\prime} \\
& \left.\checkmark \left\lvert\, \begin{array}{ccc}
1 \\
2 \\
2 \\
2
\end{array}\right.\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right]
\end{aligned}
$$

Basis cols of P :

- cols span the whole space "enough directions
- lin ind. \rightarrow "no redundant directions"
\Rightarrow matrix P is invertible $x=P x^{\prime}$
"switch back if forth. $P^{-1} x=P^{-1} p x^{\prime}$ between X^{\prime} coords i

$$
P^{-1} x=x^{1}
$$

x (coords) without losing information
cols of P can reach angubere in the Space
nodundont cords
if P is both $\begin{gathered}\text { infective } \\ \text { in e } \\ \text { one-to-one } \\ \text { onto }\end{gathered}=$ bijective $=$ invertible "reaches anywhere" uT unique cords"

For matrices $P^{-1} P=I=P P^{-1}=I$
BRIEF
PICTURE:

cols of P^{-1} ?

FACT ABOUT INVERSES
Properties or $\mathbb{C}^{n \times n}$

- $\left(P^{-1}\right)^{-1}=P$
- $(k P)^{-1}=\frac{1}{k} P^{-1}$
- $(P Q)^{-1}=Q^{-1} P^{-1} \quad Q \in \mathbb{C}^{n \times n}$
- $\operatorname{det}\left(P^{-1}\right)=\frac{1}{\operatorname{det}(P)} \quad \begin{gathered}\text { matrix of } \\ \text { cofacto }\end{gathered}$
- $P^{-1}=\frac{1}{\operatorname{det}(P)} \operatorname{Adj}(P)>\begin{gathered}\text { et of sub } \\ \text { matrices } \\ \text { mess } y "\end{gathered}$

Equivalent Properties P square
All of these

- P is invertible ie P^{-1} exists
statements
- row reduce P to I
- col reduce P to I
- P is aprodact of elementary matrices
- P(square) and full row rank
$\} \rightarrow$ Goussions are equivalent elimination (solve a system) of equs)
- P (square) and full col rank
- cols of P are lin ind. (P square) Wikipedia
- rows of P are lin ind. (Psquare)
- $y=P_{x}$ has a unique soln bor cay
- Phas atrivial nulispace, null $(P)=\{0]$
- $P x=0 \Rightarrow x=0$
- cols for a basis
- P^{T} is invertible
- O is not an eigenvalue of P
- $\operatorname{det}(P) \neq 0 \longleftarrow$ "no dim collapse"
- J Q st. $P Q=Q P=I \quad\left(P^{-1}=Q\right)$
- P has a left ह̀ right inverse

Computational Inverse Facts

- 2×2 inverse

$$
\begin{aligned}
& P=\left[\begin{array}{cc}
a \times 2 & \text { inverse } \\
c & d
\end{array}\right] \quad P^{-1}=\frac{1}{\operatorname{det} P} \operatorname{Adj}(P)=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& \text { on ly due cast } P^{-1}=\frac{1}{\operatorname{det}(P)}[T r(P) I-P] \\
& \text { in } 2 \times 2 \text { a } 3 \times 3 P^{-1}=\frac{1}{\operatorname{det}(P)}\left[\frac{1}{2}\left[\operatorname{tr}(P)^{2}-\operatorname{tr}\left(P^{2}\right)\right] I-P \operatorname{tr}(P)+P^{2}\right]
\end{aligned}
$$

- $n \times n$ similar formulas...

Side Note:
$\operatorname{tr}(\cdot)$: sum of det:(signed) volume of the parallel pipreel given by the cols of matrix signed

$$
P=\left[P_{1} P_{2} P_{3}\right]
$$

volume $=$ deft
"determinant becomes negative if you Slip the volume inside out
if $\operatorname{det}(P)=0$
 try to invert. - ${ }^{x_{3} \text { where does }}$ (impossible)
 \rightarrow any point lime gets mapped to P_{3} when you apply P

Block Matrix Inversion:

$$
\begin{aligned}
& P^{-1}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C^{-1} B D^{-1}\right.
\end{array}\right] * * \\
& =\left[\begin{array}{lr}
A^{-1}+A^{-1} B\left(D-C C^{-1} B^{-1} C A^{-1}\right. & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right] * \\
& \text { Caveat: }
\end{aligned}
$$

- D^{-1} exist and $\left(A-B D^{-1} C\right)^{-1}$ exist
- A^{-1} exist and $\left(D-C A^{-1} B\right)^{-1}$ exist oR $\left.\begin{array}{l}\left(A-B D^{-1} C\right)^{-1} \\ \left(D-C A^{-1} B\right)^{-1}\end{array}\right\} \rightarrow$ Schur complements source: $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}I & B D^{-1} \\ 0 & I\end{array}\right]\left[\begin{array}{cc}A-B^{-1} C & 0 \\ 0 & D\end{array} \left\lvert\,\left[\begin{array}{cc}I & 0 \\ D^{-1} & I\end{array}\right]+k\right.\right.$

$$
\begin{aligned}
& n_{1}=n_{2} \text { not necessary inert }
\end{aligned}
$$

$$
\left[\begin{array}{ll}
A & \mid B \\
C & \square
\end{array}\right] \quad\left[\begin{array}{ll}
A & B \\
C & B
\end{array}\right]
$$

Woodbury Matrix Identity
(specific case Sherman Morrison Formula) $A \in \mathbb{R}^{n \times n}$ ingeweral $(A+B)^{-1} \neq A^{-1}+B^{-1}$ scalar $\frac{1}{x+y} \neq \frac{1}{x}+\frac{1}{y}$

$$
\frac{(A+U C V)^{-1}}{\text { matrix }}=\frac{A^{-1}}{\text { add }}-A^{-1} u \frac{\left(C^{-1}+V A^{-1} u\right)^{-1}}{{ }^{-1}} v A^{-1} *
$$

U, C, v dimensions $U C V$ needs to be $n \times n$ A^{-1} needs to exist and $\left(C^{-1}+V A^{-1} U\right)^{-1}$ exists

trick computationally Kalian efficient $\underset{\text { fitter }}{\mathrm{Kalman}}\left(A^{-}+U^{-} C V^{-1}\right)^{-1}$

Newman Series
if $\lim _{n \rightarrow \infty}(I-A)^{n}=0 \Longrightarrow A^{-1}=\sum_{n=0}^{\infty}(I-A)^{n}$
not on a test matrix version of harmonic series
Derivative of Inverse:

$$
\begin{aligned}
& P(t) \quad \frac{d P^{-1}}{d t}=-P^{-1} \frac{d P}{d t} P^{-1} \leftarrow \\
& \frac{d}{d t} P^{-1} P=\frac{d}{d t} I \Rightarrow \frac{d P^{-1}}{\partial t} P+P^{-1} \frac{d P}{d t}=0 \\
&
\end{aligned}
$$

Elementary Matrices ic computing next time. inverses

Bases for functions:
standers: $\delta(t) \quad t$ index. coordinates: $f(t)$
basis
Fowler: $\cos (n \omega t)$
coordinates: $F(\omega)$
$\sin (n) \mathrm{n})$

$$
P \quad P^{-1}
$$

$$
\rightarrow F^{\prime}(\cdot) F^{-1}(\cdot)
$$

