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Systems of Equations

Matrices are used to represent and solve systems of linear equations. Suppose we A € R”*" and
y € R™ and x € R" that satisfy.

y=Ax 6]

Note that this equation is slightly more complicated than it first appears. Depending on the shape
of A it may have a unique solution, no solution, or a whole subspace of solutions.

Unique Solution

The simplest case is that A is square, ie. z,y € R" and the columns are linearly independent. This
means there is a unique linear commbination of the columns that reaches every individual point y in
the co-domain. We can compute this exact linear combination by doing Gaussian elimination also
known as row reduction. Each step of Gaussian elimination, each elementary row operation can
be represented by left-multiplication of Equation (1) by a specific type of matrix called elementary
matrices. These elementary matrices come in three types: row-multiplying, row-swapping, and
row-adding demonstrated below
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When we perform Gaussian elimination on Equation (1) to transform A into the identity, we left-
multiply by the appropriate set of elementary matrices { E1, ..., Fy}
(Ek"’Elly:\(Ek"'El)%l’ (3)
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These elementary matrices multiplied together are called the left-inverse Al_l = (Eg--- Ey),ie. the
matrix that transforms A into the identity by left-multiplying. Note that we could have performed
a similar procedure to solve the equation y' = 2" A except we would multiply on the right by
elementary column matrices. This procedure would construct the right inverse of A, denoted A 1.
y' A7t = 2T AAZ = 7. Assuming A is square and invertible, these two left and right inverses
are the same and we simply denote them as A=t = A;! = AL This can be seen from
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No solution (Least Squares)

If m > n,ie. Ais "tall", then it is unlikely that there is any solution at all. The columns of A
span a subspace of the co-domain called the range of A. There will only be a solution for z if
y happens to lie in this subspace. If the columns of A are linearly independent, then A will still
have a left-inverse. This is based on the fact that the linear independence of the columns of implies
that the matrix A" A will be invertible. This in turn implies that we can construct a left-inverse
as A, = (ATA)"LAT. Supposing that y is actually in the range of A, ie. there does exist an z
solving (1), we can find this z using this left-inverse.

Assume y in range of A... y = Ax
(ATA) ATy = (ATA) AT - Ar =2 ®)

Now suppose y is not in the range of A. We can still try to find an = that makes Ax as close to y as
possible, ie. we can try to minimize

ly— Azll} = (y— Ax) " (y — Ax) =y y +y Az + 2" AT Az =) (y; — Azz)®  (6)

x that minimizes this quantity is called the least squares solution, vy = A(AT A)~' ATy which is

the projection of y onto the range of A. We can derive the least squares solution by computing the

derivative of (6) and set it equal to O.
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E (yTy —y' Az — 2" Ay + xTATAx> = 2y A+2:TATA=0 (7)
x

= r=(ATA) ATy ®)



No x st / .
S:XA; 3 '/ A= U“ 1}7——&
NuﬂsptzchT

Y-AX

& A T
/X\XLZ A CA AB A')(
MW \%_ AML

Subspace/Continuum of Solutions

Suppose n > m, ie. A is "fat", and there are more than m linearly independent columns. In . this
case, we have more columns than we need to span the space. If we pick any m linear independent
columns, we can compute a solution. Suppose the first m columns of A are linearly independent,
A=[A -] where A € R™™ We can then compute one solution as z* = [A~!y 0] " where 0 is
the appropriate size vector of zeros. The same procedure with different sets of columns produces
up to n — m + 1 linearly independent solutions which we can organize as the columns of X =
[zt -+ "™ Note that A(x* — 27) = 0, ie. * — 27 is in the nullspace of A. A basis for the
nullspace of A can be computed as the columns of X1/ where the matrix W € R(—m+Dx(=m) jg
given by W = [1 — I]" where 1 is a vector of ones of the appropriate size. (Note that W computes
differences between the columns of X. A different W' that computes column differences could be
used.) Any solution of (1) has the form

r=a+ans =2+ XW2

for some z € R"™, ie. any solution consists of some specific solution z° plus some component
in the nullspace of A. We can compute a specific solution using the method above (selecting m
linearly independent columns). However, assuming the rows of A are linearly independent and if
we want a specific solution z° that is orthogonal to the nullspace of A, then we can select x as a
linear combination of the rows of A. Assume z° has the form 2° = AT w with w € R™. Plugging
into (1), gives

y=AATw = w=(AAT) Ty = %= AT(AAT) Yy )

Note that 2 is y times a right-inverse of A. Note also that 2° is orthogonal to the nullspace of
A since z,gAT(AAT)™1 = 0. Note also that 2° computed in this way is the solution with the
minimum 2-norm. To see this, note that adding some component from the nullspace only increases



the square of the 2-norm.

|£L’0 -+ $NS|2 = (l‘o -+ .CENs)T(l'O + -TNS) (10)
= (2°) Ta® + 22362 + xigns (11)
= (2°) T2 + aysans = [2°° + |ans|? == [2°)? (12)

General Case

Minimum-Norm, Least Squares (Moore-Penrose Pseudoinverse)

In the general case, A € R™ ™ may not be full column or row rank. In this case neither AT A or
AAT or In this case, for there are many possible z’s that are all equally bad at reaching y. Perhaps
the most sensible = to choose in this case is the minimum-norm, least squares solution. Here, we
look for the least squares solution that does not include any element in the nullspace of A. This can
be computed using the Moore-Penrose pseudoinverse denoted A'. This is best understood using
the singular-value decomposition. (Here we assume the matrix A is real and so we use the real
SVD; an exactly analogous formula works in the complex case). Given that the SVD of A, A can
be written as follows
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Note that in this formula, we’ve followed the standard rules for taking an inverse—reversing the
order and inverting V and U (since U~! = U" and V! = V') — but we only inverted the
part of the center matrix that is invertible. As detailed in the SVD lecture, Uy, Us, Vi, V5 have the
following interpretations.

U; : orthonormal basis for the range of A
U, : orthonormal basis for the nullspace of A"
Vi : orthonormal basis for the range of A"
V5 @ orthonormal basis for the nullspace of A
Intuitively, A contains an invertible map between the range of A and the range of A" and we’ve

inverted this part of A while ignoring the part in the nullspace. Expanding out, we get that (13)
could be written as

A=U2V, — At =viztu] (14)

Note that here this looks like a simple formula except U/; and V; are tall so they can’t simply be
inverted.

Exercise:. Show that for an equation y = Ax (for general A), v = A'y gives the least squares
solution with the minimum norm.



Gaussian Elimination: Row Reduction

We now consider what happens if we perform Gaussian elimination on a general matrix with rank
k where k < m, k < n. For a matrix A € R"™*" with rank k, assuming the first k£ columns of A
are linearly independent we can find an invertible £ € R™*™ that is a composition of elementary
matrices & = E, - - - F; such that

(15)

FA = [1 B]

0 O
with I € R*** and B € R¥*"=*_ Tt will be helpful to decompose E and also £~! as

JE— / JR—
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where
E c kam’ E" e R(m—k)xm’ F c Rka, ) c Rmx(m—k)

Note: since A has rank k, there will always be at least k linearly independent columns, if the
first £ columns aren’t linearly independent then the above formula must be changed to be

0 0 (16)

BAP = {f B}
where P is some permutation matrix that reorders the columns so that the first £ are linearly
independent. This is the most general form Gaussian elimination can take. In this case, we solve
the linear system y = APz’ where ©+ = Pz’ <= 12’ = P"x. Once we’ve solved for 2/, we can
recover x. For simplicity, we will consider equation (15).

Note that since the columns (or rows) of E’, E”, I, " are all columns (or rows) of invertible

matrices, they must be linearly independent. We note also that

. - F - | | E'F" FE'F" I 0
[:EElz{_ E" _:| fr P|w :{E//F/ E//F//1:|:O I

Specifically, note which submatrices must be orthogonal. We also have that [ = E~'F = ['E’ +
FIIE/I.
Using the above decomposition the row-reduction operations become
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FA = [ E"A E"A
.



It can also be quite useful to write the above equation as a decomposition of A
I B | , | 41 |1 B
I R

It is clear from this that F” must span the range of A. Since the columns are linearly independent it
is also a basis. We also have that the rows of E” form a basis for the nullspace of A” by a similar
linear independence argument, rank-nullity (applied to the co-domain) and the fact that E” F" = 0.
Note that the rows of [I B} are also linearly independent (since the first subblock is the identity)

and thus [I B]T

nullspaces, the rows of [BT —1 }T are a basis for the nullspace of A. We can summarize these
insights in a list of bases for the four fundamental subspaces related to A.

A:E*{ }zpp<m

is a basis for the range of A” Finally, by arguments given in the discussion on

Range . F/ Nullspace E//T Range . I Nullspace B
of A ) of AT of AT - BT | of A | _T

Gaussian Elimination: Column Reduction

We can make a similar argument to the above for column reduction in the general case. For a
matrix A € R"™*" with rank k assuming the first k£ rows of A are linearly independent, we can find
an invertible £ € R™*"™ that is a composition of elementary matrices £ = Fj - - - E, such that

I o
AE:&?J

with I € R¥** and C' € R¥*™~*_(If the first k rows are not linearly independent, replace AE with
PAF for a permutation matrix P that shuffles & linearly independent rows into the first k spots.)
Note here this composition of elementary matrices £ will be different than in the row reduction
case. Again it will be helpful to decompose F and also £~! as
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where £/ € R™* E" € x x x — 1, F' € R¥" and F” € x — 71 x x. Note that since the
columns (or rows) of £, E”, F’, F" are all columns (or rows) of invertible matrices, they must be
linearly independent. We note also that

B /. E|'/ E|W - F'E 'R 0 I

Specifically, note which submatrices must be orthogonal. We also have that [ = EE~! = E'F’ +
EIIIF//‘
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Using the above decomposition the column-reduction operations become

— A — |/ |” A'E'
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AE" I 0
A'E"| T € 0

It can also be quite useful to write the above equation as decomposition of A

-l L

F//
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It is clear from this that the rows of F” must span the range of AT. Since the rows are linearly
independent it is also a basis. We also have that the columns of £” form a basis for the nullspace
of A by a similar linear independence argument, rank-nullity (applied to the co-domain) and the

fact that F”E” = (. Note that the columns of é

are also linearly independent (since the first

T
subblock is the identity) and thus [é} is a basis for the range of A Finally, by arguments given

in the discussion on nullspaces, the rows of [C —1 } are a basis for the nullspace of A”. We can
summarize these insights in a list of bases for the four fundamental subspaces related to A.

Nullspace
of AT

©

Range [[1
of A - cl’
Inverse Properties

Properties of inverses:

P, Q) € C"" invertible, and k € C.
« (P l=P
« (kP)"t=1p
« (PQ)TT=Q7' P

o det(P71) = det%P)

.+ Pl = s Adi(P)

Equivalent Inverse Properties:
e Pisinvertible, ie. P~ exists.

o PT isinvertible

Range .
of AT -

Nullspace E//

/T
F ) of A



* P can be row reduced to the identity (via Gaussian Elimination (GE))

* P can be column reduced to the identity (via GE).

* P is a product of elementary matrices.

* P (square) is full row rank.

* P (square) is full column rank.

* Columns of P (square) are linearly independent, ie. Pz =0 = = = 0.

» Rows of P (square) are linearly independent, ie. y' P =0 = y' = 0. Rows of P (square)
are linearly independent.

* y = Px has a unique solution for each y.

* P has a trivial nullspace. N'(P) = {0}

* 0is not an eigenvalue of P.

* det(P) # 0.

* There exists () such that PQ = QP =1 (P~ = Q).

P has a left and a right inverse.

Inverse Formulas

e 2 X 2 1inverse

b sl
_ detl(P) TH(P)I -~ P

¢ 3 X 3 inverse

L
der(p) AI(P)
_ detl(P) §(Te(P)? = Te(P?)) T - PTe(P) + P?




¢ Block Matrix Inversion

A B!
-1 __
P =[e D)
B (A— BD710)™! —(A— BD™'C)"'BD!
~D'C(A—BD™'C)"! D'+ D'C(A— BD"'C)"'BD!

C[A 4 AB(D - CA'B)\CAY —A'B(D — CA'B)!
= (D — CA-'B)"1CA~! (D~ CA-'B)~!
BD71C) ! existor A~t and (D — CA™!'B) ™! exist.

Proof:
A B]™" ([T BD|[A-BD*C 0o][ I 0]\
c p| ~\|o I 0 D| |D'C 1
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* Woodbury Matrix Identity
Note: this formula is a work horse of matrix algebra and worth memorizing.

(A+Uucv)yt=A"1-A'UcCct+valu)ylva!

where A € C™", U € C™*, C € C¥*,and V € CF*". This formula is particularly useful
when n > k (U is tall and V is fat). In particular, if U is a column vector, V' is a row vector,
and C' is a scalar, then this equation is called the Sherman-Morrison Formula.

Special Cases:
— Inverse of A + B:
(A+B)y'=A1-A'BU+A'B)tA!

Note: other forms are possible as well.

— Sherman-Morrison:

_ _ _ 1 _
(A+UUT) 1:/4 1—A IUmUTA !



¢ Neumann Series

-1 _ _ n : : _ n _
A —X%U A if lim (1= A)" =0
¢ Derivative of Inverse
For P(t)
opP—1! oP
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