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Systems of Equations
Matrices are used to represent and solve systems of linear equations. Suppose we A ∈ Rm×n and
y ∈ Rm and x ∈ Rn that satisfy.

y = Ax (1)

Note that this equation is slightly more complicated than it first appears. Depending on the shape
of A it may have a unique solution, no solution, or a whole subspace of solutions.

Unique Solution
The simplest case is that A is square, ie. x, y ∈ Rn and the columns are linearly independent. This
means there is a unique linear commbination of the columns that reaches every individual point y in
the co-domain. We can compute this exact linear combination by doing Gaussian elimination also
known as row reduction. Each step of Gaussian elimination, each elementary row operation can
be represented by left-multiplication of Equation (1) by a specific type of matrix called elementary
matrices. These elementary matrices come in three types: row-multiplying, row-swapping, and
row-adding demonstrated below
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When we perform Gaussian elimination on Equation (1) to transform A into the identity, we left-
multiply by the appropriate set of elementary matrices {E1, . . . , Ek}

(Ek · · ·E1)︸ ︷︷ ︸
A−1

l

y = (Ek · · ·E1)A︸ ︷︷ ︸
I

x (3)
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These elementary matrices multiplied together are called the left-inverse A−1
l = (Ek · · ·E1), ie. the

matrix that transforms A into the identity by left-multiplying. Note that we could have performed
a similar procedure to solve the equation y⊤ = x⊤A except we would multiply on the right by
elementary column matrices. This procedure would construct the right inverse of A, denoted A−1

r .
y⊤A−1

r = x⊤AA−1
r = x⊤. Assuming A is square and invertible, these two left and right inverses

are the same and we simply denote them as A−1 = A−1
l = A−1

r . This can be seen from

A−1
l · A = I

A−1
l · A · A−1

r = I · A−1
r

A−1
l = A−1

r

(4)

No solution (Least Squares)
If m > n, ie. A is "tall", then it is unlikely that there is any solution at all. The columns of A
span a subspace of the co-domain called the range of A. There will only be a solution for x if
y happens to lie in this subspace. If the columns of A are linearly independent, then A will still
have a left-inverse. This is based on the fact that the linear independence of the columns of implies
that the matrix A⊤A will be invertible. This in turn implies that we can construct a left-inverse
as A−1

l = (A⊤A)−1A⊤. Supposing that y is actually in the range of A, ie. there does exist an x
solving (1), we can find this x using this left-inverse.

Assume y in range of A... y = Ax

(A⊤A)−1A⊤y = (A⊤A)−1A⊤ · Ax = x (5)

Now suppose y is not in the range of A. We can still try to find an x that makes Ax as close to y as
possible, ie. we can try to minimize

||y − Ax||22 = (y − Ax)⊤(y − Ax) = y⊤y + y⊤Ax+ x⊤A⊤Ax =
∑
i

(yi − Ai:x)
2 (6)

x that minimizes this quantity is called the least squares solution, xlsq = A(A⊤A)−1A⊤y which is
the projection of y onto the range of A. We can derive the least squares solution by computing the
derivative of (6) and set it equal to 0.

∂

∂x

(
y⊤y − y⊤Ax− x⊤Ay + x⊤A⊤Ax

)
= −2y⊤A+ 2x⊤A⊤A = 0 (7)

⇒ x = (A⊤A)−1A⊤y (8)
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Subspace/Continuum of Solutions
Suppose n > m, ie. A is "fat", and there are more than m linearly independent columns. In . this
case, we have more columns than we need to span the space. If we pick any m linear independent
columns, we can compute a solution. Suppose the first m columns of A are linearly independent,
A = [Ā · · · ] where Ā ∈ Rm×m. We can then compute one solution as x1 = [Ā−1y 0]⊤ where 0 is
the appropriate size vector of zeros. The same procedure with different sets of columns produces
up to n − m + 1 linearly independent solutions which we can organize as the columns of X =
[x1 · · · xn−m+1]. Note that A(xi − xj) = 0, ie. xi − xj is in the nullspace of A. A basis for the
nullspace of A can be computed as the columns of XW where the matrix W ∈ R(n−m+1)×(n−m) is
given by W = [1− I]⊤ where 1 is a vector of ones of the appropriate size. (Note that W computes
differences between the columns of X . A different W that computes column differences could be
used.) Any solution of (1) has the form

x = x0 + xNS = x0 +XWz

for some z ∈ Rn−m, ie. any solution consists of some specific solution x0 plus some component
in the nullspace of A. We can compute a specific solution using the method above (selecting m
linearly independent columns). However, assuming the rows of A are linearly independent and if
we want a specific solution x0 that is orthogonal to the nullspace of A, then we can select x as a
linear combination of the rows of A. Assume x0 has the form x0 = A⊤w with w ∈ Rm. Plugging
into (1), gives

y = AA⊤w ⇒ w = (AA⊤)−1y ⇒ x0 = A⊤(AA⊤)−1y (9)

Note that x0 is y times a right-inverse of A. Note also that x0 is orthogonal to the nullspace of
A since x⊤

NSA
⊤(AA⊤)−1 = 0. Note also that x0 computed in this way is the solution with the

minimum 2-norm. To see this, note that adding some component from the nullspace only increases
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the square of the 2-norm.

|x0 + xNS|2 = (x0 + xNS)
⊤(x0 + xNS) (10)

= (x0)⊤x0 + 2x⊤
NSx

0 + x⊤
NSxNS (11)

= (x0)⊤x0 + x⊤
NSxNS = |x0|2 + |xNS|2 ≥= |x0|2 (12)

General Case

Minimum-Norm, Least Squares (Moore-Penrose Pseudoinverse)
In the general case, A ∈ Rm×n may not be full column or row rank. In this case neither A⊤A or
AA⊤ or In this case, for there are many possible x’s that are all equally bad at reaching y. Perhaps
the most sensible x to choose in this case is the minimum-norm, least squares solution. Here, we
look for the least squares solution that does not include any element in the nullspace of A. This can
be computed using the Moore-Penrose pseudoinverse denoted A†. This is best understood using
the singular-value decomposition. (Here we assume the matrix A is real and so we use the real
SVD; an exactly analogous formula works in the complex case). Given that the SVD of A, A† can
be written as follows

A =

[
U1 U2

]
︸ ︷︷ ︸

U

[
Σ 0
0 0

] [
−V ⊤

1 −
−V ⊤

2 −

]
︸ ︷︷ ︸

V ⊤

=⇒ A† =

[
V1 V2

]
︸ ︷︷ ︸

V

[
Σ−1 0
0 0

] [
−U⊤

1 −
−U⊤

2 −

]
︸ ︷︷ ︸

U⊤

(13)

Note that in this formula, we’ve followed the standard rules for taking an inverse—reversing the
order and inverting V and U (since U−1 = U⊤ and V −1 = V ⊤) — but we only inverted the
part of the center matrix that is invertible. As detailed in the SVD lecture, U1, U2, V1, V2 have the
following interpretations.

U1 : orthonormal basis for the range of A

U2 : orthonormal basis for the nullspace of A⊤

V1 : orthonormal basis for the range of A⊤

V2 : orthonormal basis for the nullspace of A

Intuitively, A contains an invertible map between the range of A and the range of A⊤ and we’ve
inverted this part of A while ignoring the part in the nullspace. Expanding out, we get that (13)
could be written as

A = U1ΣV
⊤
1 =⇒ A† = V1Σ

−1U⊤
1 (14)

Note that here this looks like a simple formula except U1 and V1 are tall so they can’t simply be
inverted.

Exercise:. Show that for an equation y = Ax (for general A), x = A†y gives the least squares
solution with the minimum norm.
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Gaussian Elimination: Row Reduction
We now consider what happens if we perform Gaussian elimination on a general matrix with rank
k where k < m, k < n. For a matrix A ∈ Rm×n with rank k, assuming the first k columns of A
are linearly independent we can find an invertible E ∈ Rm×m that is a composition of elementary
matrices E = Eℓ · · ·E1 such that

EA =

[
I B
0 0

]
(15)

with I ∈ Rk×k and B ∈ Rk×n−k. It will be helpful to decompose E and also E−1 as

E =

[
− E ′ −
− E ′′ −

]
, E−1 =

 | |
F ′ F ′′

| |


where

E ′ ∈ Rk×m, E ′′ ∈ R(m−k)×m, F ′ ∈ Rm×k, F ′′ ∈ Rm×(m−k)

Note: since A has rank k, there will always be at least k linearly independent columns, if the
first k columns aren’t linearly independent then the above formula must be changed to be

EAP =

[
I B
0 0

]
(16)

where P is some permutation matrix that reorders the columns so that the first k are linearly
independent. This is the most general form Gaussian elimination can take. In this case, we solve
the linear system y = APx′ where x = Px′ ⇐⇒ x′ = P⊤x. Once we’ve solved for x′, we can
recover x. For simplicity, we will consider equation (15).

Note that since the columns (or rows) of E ′, E ′′, F ′, F ′′ are all columns (or rows) of invertible
matrices, they must be linearly independent. We note also that

I = EE−1 =

[
− E ′ −
− E ′′ −

] | |
F ′ F ′′

| |

 =

[
E ′F ′ E ′F ′′

E ′′F ′ E ′′F ′′

]
=

[
I 0
0 I

]

Specifically, note which submatrices must be orthogonal. We also have that I = E−1E = F ′E ′ +
F ′′E ′′.

Using the above decomposition the row-reduction operations become

EA =

[
− E ′ −
− E ′′ −

] | |
A′ A′′

| |

 =

[
E ′A′ E ′A′′

E ′′A′ E ′′A′′

]
=

[
I B
0 0

]
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It can also be quite useful to write the above equation as a decomposition of A

A = E−1

[
I B
0 0

]
=

 | |
F ′ F ′′

| |

[
I B
0 0

]
= F ′ [I B

]
It is clear from this that F ′ must span the range of A. Since the columns are linearly independent it
is also a basis. We also have that the rows of E ′′ form a basis for the nullspace of AT by a similar
linear independence argument, rank-nullity (applied to the co-domain) and the fact that E ′′F ′ = 0.
Note that the rows of

[
I B

]
are also linearly independent (since the first subblock is the identity)

and thus
[
I B

]T is a basis for the range of AT Finally, by arguments given in the discussion on
nullspaces, the rows of

[
BT −I

]T are a basis for the nullspace of A. We can summarize these
insights in a list of bases for the four fundamental subspaces related to A.

Range
of A : F ′, Nullspace

of AT : E ′′T Range
of AT :

[
I
BT

]
, Nullspace

of A :

[
B
−I

]

Gaussian Elimination: Column Reduction
We can make a similar argument to the above for column reduction in the general case. For a
matrix A ∈ Rm×n with rank k assuming the first k rows of A are linearly independent, we can find
an invertible E ∈ Rm×m that is a composition of elementary matrices E = E1 · · ·Eℓ such that

AE =

[
I 0
C 0

]
with I ∈ Rk×k and C ∈ Rk×m−k. (If the first k rows are not linearly independent, replace AE with
PAE for a permutation matrix P that shuffles k linearly independent rows into the first k spots.)
Note here this composition of elementary matrices E will be different than in the row reduction
case. Again it will be helpful to decompose E and also E−1 as

E =

 | |
E ′ E ′′

| |

 , E−1

[
− F ′ −
− F ′′ −

]

where E ′ ∈ Rn×k, E ′′ ∈ ⋉×⋉− ℸ, F ′ ∈ Rk×n, and F ′′ ∈ ⋉− ℸ×⋉. Note that since the
columns (or rows) of E ′, E ′′, F ′, F ′′ are all columns (or rows) of invertible matrices, they must be
linearly independent. We note also that

I = E−1E =

[
− F ′ −
− F ′′ −

] | |
E ′ E ′′

| |

 =

[
F ′E ′ F ′E ′′

F ′′E ′ F ′′E ′′

]
=

[
I 0
0 I

]

Specifically, note which submatrices must be orthogonal. We also have that I = EE−1 = E ′F ′ +
E ′′F ′′.
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Using the above decomposition the column-reduction operations become

AE =

[
− A′ −
− A′′ −

] | |
E ′ E ′′

| |

 =

[
A′E ′ A′E ′′

A′′E ′ A′′E ′′

]
=

[
I 0
C 0

]

It can also be quite useful to write the above equation as decomposition of A

A =

[
I 0
C 0

]
E−1 =

[
I 0
C 0

] [
− F ′ −
− F ′′ −

]
=

[
I
C

]
F ′

It is clear from this that the rows of F ′ must span the range of AT . Since the rows are linearly
independent it is also a basis. We also have that the columns of E ′′ form a basis for the nullspace
of A by a similar linear independence argument, rank-nullity (applied to the co-domain) and the

fact that F ′E ′′ = 0. Note that the columns of
[
I
C

]
are also linearly independent (since the first

subblock is the identity) and thus
[
I
C

]T
is a basis for the range of A Finally, by arguments given

in the discussion on nullspaces, the rows of
[
C −I

]
are a basis for the nullspace of AT . We can

summarize these insights in a list of bases for the four fundamental subspaces related to A.

Range
of A :

[
I
C

]
, Nullspace

of AT :

[
CT

−I

]
Range
of AT : F ′T , Nullspace

of A : E ′′

Inverse Properties

Properties of inverses:
P,Q ∈ Cn×n invertible, and k ∈ C.

• (P−1)−1 = P

• (kP )−1 = 1
k
P−1

• (PQ)−1 = Q−1P−1

• det(P−1) = 1
det(P )

• P−1 = 1
det(P )

Adj(P )

Equivalent Inverse Properties:
• P is invertible, ie. P−1 exists.

• P⊤ is invertible
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• P can be row reduced to the identity (via Gaussian Elimination (GE))

• P can be column reduced to the identity (via GE).

• P is a product of elementary matrices.

• P (square) is full row rank.

• P (square) is full column rank.

• Columns of P (square) are linearly independent, ie. Px = 0 ⇒ x = 0.

• Rows of P (square) are linearly independent, ie. y⊤P = 0 ⇒ y⊤ = 0. Rows of P (square)
are linearly independent.

• y = Px has a unique solution for each y.

• P has a trivial nullspace. N (P ) = {0}

• 0 is not an eigenvalue of P .

• det(P ) ≠ 0.

• There exists Q such that PQ = QP = I (P−1 = Q).

• P has a left and a right inverse.

Inverse Formulas
• 2× 2 inverse

P =

[
a b
c d

]
, P−1 =

1

det(P )
Adj(P ) =

1

ad− bc

[
d −b
−c a

]
=

1

det(P )

[
Tr(P )I − P

]
• 3× 3 inverse

P−1 =
1

det(P )
Adj(P )

=
1

det(P )

[
1
2

(
Tr(P )2 − Tr(P 2)

)
I − PTr(P ) + P 2

]
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• Block Matrix Inversion

P−1 =

[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
assumingD−1 and (A−

BD−1C)−1 exist or A−1 and (D − CA−1B)−1 exist.

Proof: [
A B
C D

]−1

=

([
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

])−1

=

[
I 0

−D−1C I

] [
(A−BD−1C)−1 0

0 D−1

] [
I −BD−1

0 I

]

[
A B
C D

]−1

=

([
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

])−1

=

[
I −A−1B
0 I

] [
A−1 0
0 (D − CA−1B)−1

] [
I 0

−CA−1 I

]
• Woodbury Matrix Identity

Note: this formula is a work horse of matrix algebra and worth memorizing.

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

where A ∈ Cn×n, U ∈ Cn×k, C ∈ Ck×k, and V ∈ Ck×n. This formula is particularly useful
when n > k (U is tall and V is fat). In particular, if U is a column vector, V is a row vector,
and C is a scalar, then this equation is called the Sherman-Morrison Formula.

Special Cases:

– Inverse of A+B:

(A+B)−1 = A−1 − A−1B(I + A−1B)−1A−1

Note: other forms are possible as well.

– Sherman-Morrison:

(A+ uv⊤)−1 = A−1 − A−1u
1

1 + v⊤A−1u
v⊤A−1
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• Neumann Series

A−1 =
∞∑
n=0

(I − A)n, if lim
n→∞

(I − A)n = 0

• Derivative of Inverse
For P (t)

∂P−1

∂t
= −P−1∂P

∂t
P−1
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