Lecture : Matrix Inverses and Systems of Equations

Winter 2021
Lecturer: Dan Calderone

Systems of Equations

Matrices are used to represent and solve systems of linear equations. Suppose we $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n}$ that satisfy.

$$
\begin{equation*}
y=A x \tag{1}
\end{equation*}
$$

Note that this equation is slightly more complicated than it first appears. Depending on the shape of A it may have a unique solution, no solution, or a whole subspace of solutions.

Unique Solution

The simplest case is that A is square, ie. $x, y \in \mathbb{R}^{n}$ and the columns are linearly independent. This means there is a unique linear commbination of the columns that reaches every individual point y in the co-domain. We can compute this exact linear combination by doing Gaussian elimination also known as row reduction. Each step of Gaussian elimination, each elementary row operation can be represented by left-multiplication of Equation (1) by a specific type of matrix called elementary matrices. These elementary matrices come in three types: row-multiplying, row-swapping, and row-adding demonstrated below

When we perform Gaussian elimination on Equation (1) to transform A into the identity, we leftmultiply by the appropriate set of elementary matrices $\left\{E_{1}, \ldots, E_{k}\right\}$

$$
\begin{equation*}
\underbrace{\left(E_{k} \cdots E_{1}\right)}_{A_{l}^{-1}} y=\underbrace{\left(E_{k} \cdots E_{1}\right) A}_{I} x \tag{3}
\end{equation*}
$$

These elementary matrices multiplied together are called the left-inverse $A_{l}^{-1}=\left(E_{k} \cdots E_{1}\right)$, ie. the matrix that transforms A into the identity by left-multiplying. Note that we could have performed a similar procedure to solve the equation $y^{\top}=x^{\top} A$ except we would multiply on the right by elementary column matrices. This procedure would construct the right inverse of A, denoted A_{r}^{-1}. $y^{\top} A_{r}^{-1}=x^{\top} A A_{r}^{-1}=x^{\top}$. Assuming A is square and invertible, these two left and right inverses are the same and we simply denote them as $A^{-1}=A_{l}^{-1}=A_{r}^{-1}$. This can be seen from

$$
\begin{align*}
A_{l}^{-1} \cdot A & =I \\
A_{l}^{-1} \cdot A \cdot A_{r}^{-1} & =I \cdot A_{r}^{-1} \tag{4}\\
A_{l}^{-1} & =A_{r}^{-1}
\end{align*}
$$

No solution (Least Squares)

If $m>n$, ie. A is "tall", then it is unlikely that there is any solution at all. The columns of A span a subspace of the co-domain called the range of A. There will only be a solution for x if y happens to lie in this subspace. If the columns of A are linearly independent, then A will still have a left-inverse. This is based on the fact that the linear independence of the columns of implies that the matrix $A^{\top} A$ will be invertible. This in turn implies that we can construct a left-inverse as $A_{l}^{-1}=\left(A^{\top} A\right)^{-1} A^{\top}$. Supposing that y is actually in the range of A, ie. there does exist an x solving (1), we can find this x using this left-inverse.

Assume y in range of $A \ldots \quad y=A x$

$$
\begin{equation*}
\left(A^{\top} A\right)^{-1} A^{\top} y=\left(A^{\top} A\right)^{-1} A^{\top} \cdot A x=x \tag{5}
\end{equation*}
$$

Now suppose y is not in the range of A. We can still try to find an x that makes $A x$ as close to y as possible, ie. we can try to minimize

$$
\begin{equation*}
\|y-A x\|_{2}^{2}=(y-A x)^{\top}(y-A x)=y^{\top} y+y^{\top} A x+x^{\top} A^{\top} A x=\sum_{i}\left(y_{i}-A_{i:} x\right)^{2} \tag{6}
\end{equation*}
$$

x that minimizes this quantity is called the least squares solution, $x_{\mathrm{lsq}}=A\left(A^{\top} A\right)^{-1} A^{\top} y$ which is the projection of y onto the range of A. We can derive the least squares solution by computing the derivative of (6) and set it equal to 0 .

$$
\begin{gather*}
\frac{\partial}{\partial x}\left(y^{\top} y-y^{\top} A x-x^{\top} A y+x^{\top} A^{\top} A x\right)=-2 y^{\top} A+2 x^{\top} A^{\top} A=0 \tag{7}\\
\Rightarrow \quad x=\left(A^{\top} A\right)^{-1} A^{\top} y \tag{8}
\end{gather*}
$$

Subspace/Continuum of Solutions

Suppose $n>m$, ie. A is "fat", and there are more than m linearly independent columns. In . this case, we have more columns than we need to span the space. If we pick any m linear independent columns, we can compute a solution. Suppose the first m columns of A are linearly independent, $A=[\bar{A} \cdots]$ where $\bar{A} \in \mathbb{R}^{m \times m}$. We can then compute one solution as $x^{1}=\left[\bar{A}^{-1} y \mathbf{0}\right]^{\top}$ where $\mathbf{0}$ is the appropriate size vector of zeros. The same procedure with different sets of columns produces up to $n-m+1$ linearly independent solutions which we can organize as the columns of $X=$ $\left[x^{1} \cdots x^{n-m+1}\right]$. Note that $A\left(x^{i}-x^{j}\right)=0$, ie. $x^{i}-x^{j}$ is in the nullspace of A. A basis for the nullspace of A can be computed as the columns of $X W$ where the matrix $W \in \mathbb{R}^{(n-m+1) \times(n-m)}$ is given by $W=[1-I]^{\top}$ where 1 is a vector of ones of the appropriate size. (Note that W computes differences between the columns of X. A different W that computes column differences could be used.) Any solution of (1) has the form

$$
x=x^{0}+x_{\mathrm{NS}}=x^{0}+X W z
$$

for some $z \in \mathbb{R}^{n-m}$, ie. any solution consists of some specific solution x^{0} plus some component in the nullspace of A. We can compute a specific solution using the method above (selecting m linearly independent columns). However, assuming the rows of A are linearly independent and if we want a specific solution x^{0} that is orthogonal to the nullspace of A, then we can select x as a linear combination of the rows of A. Assume x^{0} has the form $x^{0}=A^{\top} w$ with $w \in \mathbb{R}^{m}$. Plugging into (1), gives

$$
\begin{equation*}
y=A A^{\top} w \quad \Rightarrow \quad w=\left(A A^{\top}\right)^{-1} y \quad \Rightarrow \quad x^{0}=A^{\top}\left(A A^{\top}\right)^{-1} y \tag{9}
\end{equation*}
$$

Note that x^{0} is y times a right-inverse of A. Note also that x^{0} is orthogonal to the nullspace of A since $x_{N S}^{\top} A^{\top}\left(A A^{\top}\right)^{-1}=0$. Note also that x^{0} computed in this way is the solution with the minimum 2 -norm. To see this, note that adding some component from the nullspace only increases
the square of the 2-norm.

$$
\begin{align*}
\left|x^{0}+x_{\mathrm{NS}}\right|^{2} & =\left(x^{0}+x_{\mathrm{NS}}\right)^{\top}\left(x^{0}+x_{\mathrm{NS}}\right) \tag{10}\\
& =\left(x^{0}\right)^{\top} x^{0}+2 x_{\mathrm{NS}}^{\top} x^{0}+x_{\mathrm{NS}}^{\top} x_{\mathrm{NS}} \tag{11}\\
& =\left(x^{0}\right)^{\top} x^{0}+x_{\mathrm{NS}}^{\top} x_{\mathrm{NS}}=\left|x^{0}\right|^{2}+\left|x_{\mathrm{NS}}\right|^{2} \geq=\left|x^{0}\right|^{2} \tag{12}
\end{align*}
$$

General Case

Minimum-Norm, Least Squares (Moore-Penrose Pseudoinverse)

In the general case, $A \in \mathbb{R}^{m \times n}$ may not be full column or row rank. In this case neither $A^{\top} A$ or $A A^{\top}$ or In this case, for there are many possible x 's that are all equally bad at reaching y. Perhaps the most sensible x to choose in this case is the minimum-norm, least squares solution. Here, we look for the least squares solution that does not include any element in the nullspace of A. This can be computed using the Moore-Penrose pseudoinverse denoted A^{\dagger}. This is best understood using the singular-value decomposition. (Here we assume the matrix A is real and so we use the real SVD; an exactly analogous formula works in the complex case). Given that the SVD of A, A^{\dagger} can be written as follows

$$
A=\underbrace{\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]}_{U}\left[\begin{array}{ll}
\Sigma & 0 \tag{13}\\
0 & 0
\end{array}\right] \underbrace{\left[\begin{array}{l}
-V_{1}^{\top}- \\
-V_{2}^{\top}-
\end{array}\right]}_{V^{\top}} \quad \Longrightarrow \quad A^{\dagger}=\underbrace{\left[\begin{array}{c}
V_{1} V_{2}
\end{array}\right]}_{V}\left[\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right] \underbrace{\left[\begin{array}{l}
-U_{1}^{\top}- \\
-U_{2}^{\top}-
\end{array}\right]}_{U^{\top}}
$$

Note that in this formula, we've followed the standard rules for taking an inverse-reversing the order and inverting V and U (since $U^{-1}=U^{\top}$ and $V^{-1}=V^{\top}$) - but we only inverted the part of the center matrix that is invertible. As detailed in the SVD lecture, $U_{1}, U_{2}, V_{1}, V_{2}$ have the following interpretations.

$$
\begin{aligned}
& U_{1}: \text { orthonormal basis for the range of } A \\
& U_{2}: \text { orthonormal basis for the nullspace of } A^{\top} \\
& V_{1}: \text { orthonormal basis for the range of } A^{\top} \\
& V_{2}: \text { orthonormal basis for the nullspace of } A
\end{aligned}
$$

Intuitively, A contains an invertible map between the range of A and the range of A^{\top} and we've inverted this part of A while ignoring the part in the nullspace. Expanding out, we get that (13) could be written as

$$
\begin{equation*}
A=U_{1} \Sigma V_{1}^{\top} \quad \Longrightarrow \quad A^{\dagger}=V_{1} \Sigma^{-1} U_{1}^{\top} \tag{14}
\end{equation*}
$$

Note that here this looks like a simple formula except U_{1} and V_{1} are tall so they can't simply be inverted.

Exercise:. Show that for an equation $y=A x$ (for general A), $x=A^{\dagger} y$ gives the least squares solution with the minimum norm.

Gaussian Elimination: Row Reduction

We now consider what happens if we perform Gaussian elimination on a general matrix with rank k where $k<m, k<n$. For a matrix $A \in \mathbb{R}^{m \times n}$ with rank k, assuming the first k columns of A are linearly independent we can find an invertible $E \in \mathbb{R}^{m \times m}$ that is a composition of elementary matrices $E=E_{\ell} \cdots E_{1}$ such that

$$
E A=\left[\begin{array}{ll}
I & B \tag{15}\\
0 & 0
\end{array}\right]
$$

with $I \in \mathbb{R}^{k \times k}$ and $B \in \mathbb{R}^{k \times n-k}$. It will be helpful to decompose E and also E^{-1} as

$$
E=\left[\begin{array}{lll}
- & E^{\prime} & - \\
- & E^{\prime \prime} & -
\end{array}\right], \quad E^{-1}=\left[\begin{array}{cc}
\mid & \mid \\
F^{\prime} & F^{\prime \prime} \\
\mid & \mid
\end{array}\right]
$$

where

$$
E^{\prime} \in \mathbb{R}^{k \times m}, \quad E^{\prime \prime} \in \mathbb{R}^{(m-k) \times m}, \quad F^{\prime} \in \mathbb{R}^{m \times k}, \quad F^{\prime \prime} \in \mathbb{R}^{m \times(m-k)}
$$

Note: since A has rank k, there will always be at least k linearly independent columns, if the first k columns aren't linearly independent then the above formula must be changed to be

$$
E A P=\left[\begin{array}{ll}
I & B \tag{16}\\
0 & 0
\end{array}\right]
$$

where P is some permutation matrix that reorders the columns so that the first k are linearly independent. This is the most general form Gaussian elimination can take. In this case, we solve the linear system $y=A P x^{\prime}$ where $x=P x^{\prime} \Longleftrightarrow x^{\prime}=P^{\top} x$. Once we've solved for x^{\prime}, we can recover x. For simplicity, we will consider equation (15).

Note that since the columns (or rows) of $E^{\prime}, E^{\prime \prime}, F^{\prime}, F^{\prime \prime}$ are all columns (or rows) of invertible matrices, they must be linearly independent. We note also that

$$
I=E E^{-1}=\left[\begin{array}{lll}
- & E^{\prime} & - \\
- & E^{\prime \prime} & -
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
F^{\prime} & F^{\prime \prime} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
E^{\prime} F^{\prime} & E^{\prime} F^{\prime \prime} \\
E^{\prime \prime} F^{\prime} & E^{\prime \prime} F^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

Specifically, note which submatrices must be orthogonal. We also have that $I=E^{-1} E=F^{\prime} E^{\prime}+$ $F^{\prime \prime} E^{\prime \prime}$.

Using the above decomposition the row-reduction operations become

$$
E A=\left[\begin{array}{lll}
- & E^{\prime} & - \\
- & E^{\prime \prime} & -
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
A^{\prime} & A^{\prime \prime} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{ll}
E^{\prime} A^{\prime} & E^{\prime} A^{\prime \prime} \\
E^{\prime \prime} A^{\prime} & E^{\prime \prime} A^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
I & B \\
0 & 0
\end{array}\right]
$$

It can also be quite useful to write the above equation as a decomposition of A

$$
A=E^{-1}\left[\begin{array}{ll}
I & B \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\mid & \mid \\
F^{\prime} & F^{\prime \prime} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{ll}
I & B \\
0 & 0
\end{array}\right]=F^{\prime}\left[\begin{array}{ll}
I & B
\end{array}\right]
$$

It is clear from this that F^{\prime} must span the range of A. Since the columns are linearly independent it is also a basis. We also have that the rows of $E^{\prime \prime}$ form a basis for the nullspace of A^{T} by a similar linear independence argument, rank-nullity (applied to the co-domain) and the fact that $E^{\prime \prime} F^{\prime}=0$. Note that the rows of $\left[\begin{array}{ll}I & B\end{array}\right]$ are also linearly independent (since the first subblock is the identity) and thus $\left[\begin{array}{ll}I & B\end{array}\right]^{T}$ is a basis for the range of A^{T} Finally, by arguments given in the discussion on nullspaces, the rows of $\left[\begin{array}{ll}B^{T} & -I\end{array}\right]^{T}$ are a basis for the nullspace of A. We can summarize these insights in a list of bases for the four fundamental subspaces related to A.

$$
\begin{gathered}
\text { Range } \\
\text { of } A
\end{gathered}: \quad F^{\prime}, \quad \begin{gathered}
\text { Nullspace } \\
\text { of } A^{T}
\end{gathered}: \quad E^{\prime \prime T} \begin{gathered}
\text { Range } \\
\text { of } A^{T}
\end{gathered}:\left[\begin{array}{c}
I \\
B^{T}
\end{array}\right], \quad \begin{gathered}
\text { Nullspace } \\
\text { of } A
\end{gathered}:\left[\begin{array}{c}
B \\
-I
\end{array}\right]
$$

Gaussian Elimination: Column Reduction

We can make a similar argument to the above for column reduction in the general case. For a matrix $A \in \mathbb{R}^{m \times n}$ with rank k assuming the first k rows of A are linearly independent, we can find an invertible $E \in \mathbb{R}^{m \times m}$ that is a composition of elementary matrices $E=E_{1} \cdots E_{\ell}$ such that

$$
A E=\left[\begin{array}{cc}
I & 0 \\
C & 0
\end{array}\right]
$$

with $I \in \mathbb{R}^{k \times k}$ and $C \in \mathbb{R}^{k \times m-k}$. (If the first k rows are not linearly independent, replace $A E$ with $P A E$ for a permutation matrix P that shuffles k linearly independent rows into the first k spots.) Note here this composition of elementary matrices E will be different than in the row reduction case. Again it will be helpful to decompose E and also E^{-1} as

$$
E=\left[\begin{array}{cc}
\mid & \mid \\
E^{\prime} & E^{\prime \prime} \\
\mid & \mid
\end{array}\right], \quad E^{-1}\left[\begin{array}{lll}
- & F^{\prime} & - \\
- & F^{\prime \prime} & -
\end{array}\right]
$$

where $E^{\prime} \in \mathbb{R}^{n \times k}, E^{\prime \prime} \in \ltimes \times \ltimes-7, F^{\prime} \in \mathbb{R}^{k \times n}$, and $\left.F^{\prime \prime} \in \ltimes-\right\rceil \times \ltimes$. Note that since the columns (or rows) of $E^{\prime}, E^{\prime \prime}, F^{\prime}, F^{\prime \prime}$ are all columns (or rows) of invertible matrices, they must be linearly independent. We note also that

$$
I=E^{-1} E=\left[\begin{array}{lll}
- & F^{\prime} & - \\
- & F^{\prime \prime} & -
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
E^{\prime} & E^{\prime \prime} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
F^{\prime} E^{\prime} & F^{\prime} E^{\prime \prime} \\
F^{\prime \prime} E^{\prime} & F^{\prime \prime} E^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

Specifically, note which submatrices must be orthogonal. We also have that $I=E E^{-1}=E^{\prime} F^{\prime}+$ $E^{\prime \prime} F^{\prime \prime}$.

Using the above decomposition the column-reduction operations become

$$
A E=\left[\begin{array}{lll}
- & A^{\prime} & - \\
- & A^{\prime \prime} & -
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
E^{\prime} & E^{\prime \prime} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{ll}
A^{\prime} E^{\prime} & A^{\prime} E^{\prime \prime} \\
A^{\prime \prime} E^{\prime} & A^{\prime \prime} E^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
C & 0
\end{array}\right]
$$

It can also be quite useful to write the above equation as decomposition of A

$$
A=\left[\begin{array}{cc}
I & 0 \\
C & 0
\end{array}\right] E^{-1}=\left[\begin{array}{cc}
I & 0 \\
C & 0
\end{array}\right]\left[\begin{array}{ccc}
- & F^{\prime} & - \\
- & F^{\prime \prime} & -
\end{array}\right]=\left[\begin{array}{l}
I \\
C
\end{array}\right] F^{\prime}
$$

It is clear from this that the rows of F^{\prime} must span the range of A^{T}. Since the rows are linearly independent it is also a basis. We also have that the columns of $E^{\prime \prime}$ form a basis for the nullspace of A by a similar linear independence argument, rank-nullity (applied to the co-domain) and the fact that $F^{\prime} E^{\prime \prime}=0$. Note that the columns of $\left[\begin{array}{l}I \\ C\end{array}\right]$ are also linearly independent (since the first subblock is the identity) and thus $\left[\begin{array}{c}I \\ C\end{array}\right]^{T}$ is a basis for the range of A Finally, by arguments given in the discussion on nullspaces, the rows of $\left[\begin{array}{ll}C & -I\end{array}\right]$ are a basis for the nullspace of A^{T}. We can summarize these insights in a list of bases for the four fundamental subspaces related to A.

$$
\underset{\text { of } A}{\text { Range }}:\left[\begin{array}{c}
I \\
C
\end{array}\right], \quad \begin{gathered}
\text { Nullspace } \\
\text { of } A^{T}
\end{gathered}:\left[\begin{array}{c}
C^{T} \\
-I
\end{array}\right] \quad \begin{gathered}
\text { Range } \\
\text { of } A^{T}
\end{gathered}: \quad F^{\prime T}, \quad \begin{gathered}
\text { Nullspace } \\
\text { of } A
\end{gathered}: \quad E^{\prime \prime}
$$

Inverse Properties

Properties of inverses:

$P, Q \in \mathbb{C}^{n \times n}$ invertible, and $k \in \mathbb{C}$.

- $\left(P^{-1}\right)^{-1}=P$
- $(k P)^{-1}=\frac{1}{k} P^{-1}$
- $(P Q)^{-1}=Q^{-1} P^{-1}$
- $\operatorname{det}\left(P^{-1}\right)=\frac{1}{\operatorname{det}(P)}$
- $P^{-1}=\frac{1}{\operatorname{det}(P)} \operatorname{Adj}(P)$

Equivalent Inverse Properties:

- P is invertible, ie. P^{-1} exists.
- P^{\top} is invertible
- P can be row reduced to the identity (via Gaussian Elimination (GE))
- P can be column reduced to the identity (via GE).
- P is a product of elementary matrices.
- P (square) is full row rank.
- P (square) is full column rank.
- Columns of P (square) are linearly independent, ie. $P x=0 \Rightarrow x=0$.
- Rows of P (square) are linearly independent, ie. $y^{\top} P=0 \Rightarrow y^{\top}=0$. Rows of P (square) are linearly independent.
- $y=P x$ has a unique solution for each y.
- P has a trivial nullspace. $\mathcal{N}(P)=\{0\}$
- 0 is not an eigenvalue of P.
- $\operatorname{det}(P) \neq 0$.
- There exists Q such that $P Q=Q P=I\left(P^{-1}=Q\right)$.
- P has a left and a right inverse.

Inverse Formulas

- 2×2 inverse

$$
\begin{aligned}
P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad P^{-1} & =\frac{1}{\operatorname{det}(P)} \operatorname{Adj}(P)=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& =\frac{1}{\operatorname{det}(P)}[\operatorname{Tr}(P) I-P]
\end{aligned}
$$

- 3×3 inverse

$$
\begin{aligned}
P^{-1} & =\frac{1}{\operatorname{det}(P)} \operatorname{Adj}(P) \\
& =\frac{1}{\operatorname{det}(P)}\left[\frac{1}{2}\left(\operatorname{Tr}(P)^{2}-\operatorname{Tr}\left(P^{2}\right)\right) I-P \operatorname{Tr}(P)+P^{2}\right]
\end{aligned}
$$

- Block Matrix Inversion

$\mathrm{P}^{-1}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{-1}$
$=\left[\begin{array}{cc}\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\ -D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}\end{array}\right]$
$=\left[\begin{array}{cc}A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\ -\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}\end{array}\right]$ assuming D^{-1} and $(A-$
$\left.B D^{-1} C\right)^{-1}$ exist or A^{-1} and $\left(D-C A^{-1} B\right)^{-1}$ exist.

Proof:

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]^{-1} } & =\left(\left[\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
D^{-1} C & I
\end{array}\right]\right)^{-1} \\
& =\left[\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right]\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right] \\
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1} } & =\left(\left[\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B \\
0 & I
\end{array}\right]\right)^{-1} \\
& =\left[\begin{array}{cc}
I & -A^{-1} B \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A^{-1} & 0 \\
0 & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-C A^{-1} & I
\end{array}\right]
\end{aligned}
$$

- Woodbury Matrix Identity

Note: this formula is a work horse of matrix algebra and worth memorizing.

$$
(A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}
$$

where $A \in \mathbb{C}^{n \times n}, U \in \mathbb{C}^{n \times k}, C \in \mathbb{C}^{k \times k}$, and $V \in \mathbb{C}^{k \times n}$. This formula is particularly useful when $n>k$ (U is tall and V is fat). In particular, if U is a column vector, V is a row vector, and C is a scalar, then this equation is called the Sherman-Morrison Formula.

Special Cases:

- Inverse of $A+B$:

$$
(A+B)^{-1}=A^{-1}-A^{-1} B\left(I+A^{-1} B\right)^{-1} A^{-1}
$$

Note: other forms are possible as well.

- Sherman-Morrison:

$$
\left(A+u v^{\top}\right)^{-1}=A^{-1}-A^{-1} u \frac{1}{1+v^{\top} A^{-1} u} v^{\top} A^{-1}
$$

- Neumann Series

$$
A^{-1}=\sum_{n=0}^{\infty}(I-A)^{n}, \quad \text { if } \lim _{n \rightarrow \infty}(I-A)^{n}=0
$$

- Derivative of Inverse

For $P(t)$

$$
\frac{\partial P^{-1}}{\partial t}=-P^{-1} \frac{\partial P}{\partial t} P^{-1}
$$

