
Univ. of Washington

Lecture : Linear Algebra Notes
Fall 2020

Lecturer: Dan Calderone

1 Vector Products and Matrix Multiplication

Inner products
General notation: ⟨y, x⟩

Specific inner products:

• Vectors in Rn: ⟨y, x⟩ = y · x = yTx =
∑n

i=1 yixi

• Vectors in Cn: ⟨y, x⟩ = y∗x =
∑n

i=1 y
∗
i xi

• Integrable functions on f : [0, 1] → Cn: ⟨f, g⟩ =
∫
[0,1]

f ∗(t)g(t) dt

One of the fundamental uses of an inner product is to compute the 2-norm or length of a vector
by taking an inner product of vector with itself. |x|2 =

√
⟨x, x⟩. More generally, inner products

tell you how much two vectors line up with each other. Along these lines, we have the identity√
⟨x, x⟩ = yTx = |y||x| cos(θ) (1)

where θ is the angle between x and y. A way to see this directly is to apply the law of cosines to
|x− y|2

(x− y)T (x− y) = xTx+ yTy − 2xTy = |x|2 + |y|2 − 2|x||y| cos(θ) (2)

When yTx = 0, cos(θ) = 0 and the angle between the two vectors is either 90o and −90o and the
vectors are perpendicular or orthogonal. If y is a unit vector, ie. |y| = 1, then yTx = |x|cos(θ),
ie. yTx is the amount of x in the direction of y. If we then multiply this quantity by the unit vector
y again, we get the component of x in the y-direction or the projection of x onto y, projyx. If
y is not a unit vector, we can use the unit vector y/|y|. This leads to the general formula for a
1-dimensional projection matrix

projyx =
1

|y|2
yyTx = y(yTy)−1yTx (3)

More generally, if we want to project x onto a large subspace spanned by the columns of Y , we
can compute

projY x = Y (Y TY )−1Y Tx (4)

1



 

o I
ycytyiytjxxolyxfI mtyitlxt fi.iq

By y ytyj'ytxTp
yo y yty5yX ay

D D

yTx lx ly cosQ y zspanofD colsoff

Nox sit I

g Ax yoo CHAI EmfsB q

y Axl Nakspoafea ap
7 is is liedb ez

Range o BAA Yx
q
ACAtA5Ax e

ftp.opffff
minimizes ly Axl

AIN
1 121 O

go IN cotsfi
i o Dre

Fatale IO

 

o I
ycytyiytjxxolyxfI mtyitlxt fi.iq

By y ytyj'ytxTp
yo y yty5yX ay

D D

yTx lx ly cosQ y zspanofD colsoff

Nox sit I

g Ax yoo CHAI EmfsB q

y Axl Nakspoafea ap
7 is is liedb ez

Range o BAA Yx
q
ACAtA5Ax e

ftp.opffff
minimizes ly Axl

AIN
1 121 O

go IN cotsfi
i o Dre

Fatale IO

Outer Products
The outer product of x and y is given by

xyT =

x1y1 · · · x1yn
...

...
xny1 · · · xnyn

 (5)

Outer products are clearly rank-1 and are sometimes called dyads. Note that a 1-dimensional
projection matrix is the outer product of a unit vector with itself.

Matrix Inner Products
Let X,Y ∈ Rnxm. The inner product of two matrices is∑

i

∑
j

XijYij = Tr(Y TX) (6)

where the trace operator Tr(·) is the sum of the diagonal elements. The Frobenius-norm of a matrix
is equivalent to the vector two norm |X|F =

√
Tr(XTX).

Norms

Properties of Norms
For a vector space V over a field F , a norm is a nonnegative-valued function ∥ · ∥ : V → R.

For all a ∈ F and all v, u ∈ V
Subadditivity/triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥

Absolute homogeneity: ∥av∥ = |a|∥v∥
Nonnegativity: ∥v∥ ≥ 0

Zero vector: if ∥v∥ = 0, then v = 0

2



For convenience from here on, we will use | · | for both absolute values and norms.

Vector Norms

p-norm:
∣∣x∣∣

p
=

(∑
i

|xi|p
)1

p

, 1 ≤ p ≤ ∞

2-norm:
∣∣x∣∣

2
=

(∑
i

|xi|2
)1

2

1-norm:
∣∣x∣∣

1
=

(∑
i

|xi|

)1

∞-norm:
∣∣x∣∣∞ = lim

p→∞

(∑
i

|xi|p
)1

p

= max
i

|xi|

1 < p < 2

2 < p < 1

��x
��
p
= 1

��x
��
p
= 1��x

��
1 = 1

��x
��
1
= 1

��x
��
2
= 1

��x
��
p
= 1

0 < p < 1

Not a normP-norms

x3

R3

x2

x1

R3

��x
��
2
= 1

��x
��
1
= 1

��x
��
1 = 1

R3Norm balls in 

R3

x3

x2

x1

x3

x2

x1

3



Matrix Norms
Norms for matrices either think of the matrix as a reshaped vector (element-wise norms) or as an
operator on vector spaces. Norms that treat matrices as operators are called induced norms.

Element-wise Matrix Norms

An element-wise matrix 2-norm is called the Frobenius norm,
∣∣ · ∣∣F. For A ∈ Rm×n

∣∣A∣∣F =
∑
ij

∣∣Aij

∣∣2 = (Tr(A∗A)
)1

2

Note that considering the SVD of A ∈ Rm×n (see later on)

A = U

[
Σ 0
0 0

]
V ∗, Σ =

σ1 · · · 0
...

...
0 · · · σk


and applying properties of traces (see later on), we get |A|F =

∣∣diag(Σ)
∣∣
2
, ie. the Frobenius norm

is the 2-norm applied to a vector of the singular values.

∣∣A∣∣F =

(∑
ij

∣∣Aij

∣∣2)1
2

=
(

Tr(A∗A)
)1

2

=

(
Tr
(
V

[
Σ 0
0 0

]
U∗U

[
Σ 0
0 0

]
V ∗
))1

2

=

(
Tr
([

Σ2 0
0 0

]
V ∗V

))1
2

=

(∑
i

σ2
i

)1
2

Induced Matrix Norms

Induced matrix norms intuitively measure how much a matrix increases (or decreases) the size of
vectors it acts on. The induced p, q-norm of A ∈ Rm×n gives the maximum q-norm of a vector∣∣Ax∣∣

β
where x is chosen from the unit ball of the p-norm.

∣∣A∣∣
p,q

= max
|x|p=1

∣∣Ax∣∣
q

4



or, equivalently.

∣∣A∣∣
p,q

= max
x ̸=0

∣∣Ax

∣∣
q∣∣x∣∣

p

Sometimes we use |·|p to refer to the induced p, p-norm. Some specific induced norm examples
(again with SVD given above).

∣∣A∣∣
2
=
∣∣A∣∣

2,2
= max

|x|2=1

∣∣Ax∣∣
2

= max
|x|2=1

(x∗A∗Ax)
1
2

= max
|x|2=1

(
x∗V

[
Σ2 0
0 0

]
V ∗x

)1
2

= σmax

Block Matrix Multiplication
Consider a matrix A ∈ Rm×n divided up into elements, columns, and rows

A =

a11 · · · a1n
...

...
am1 · · · amn

 =

 | · · · |
A:1 A:n

| · · · |

 =

− A1: −
...

...
− An: −

 (7)

where we use the Matlab inspired notation A:j and Ai: to represent the ith row and jth column of
A respectively. We can define multiplying A by a vector x as

Ax =

a11 · · · a1n
...

...
am1 · · · amn


x1

...
xn

 =

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

 (8)

=

 |
A:1

|

x1 + · · ·+

 |
A:n

|

xn =

 [ −A1:− ]x
...

[ −Am:− ]x

 (9)

Note that we can interpret Ax as x selecting a particular linear combination of the columns of A.
The range of A is the span of the columns of A, ie. the set of vectors y ∈ Rm that can be reached
by selecting a suitable x, y = Ax. Alternatively, we can interpret Ax as taking the inner product
between x with each of the rows of A. The nullspace of A is the set of vectors x ∈ Rn such that
Ax = 0 or the set of vectors that are orthogonal to each of the rows of A.

5



We now consider multiplying two matrices A ∈ Rm×n and B ∈ Rn×k. Note that the inner
dimensions must match.

AB =

 a11b11 + · · ·+ a1nb1n · · · a11b1k + · · ·+ a1nbnk
...

...
am1b11 + · · ·+ amnb1n · · · am1b1k + · · ·+ amnbnk

 (10)

Note that this same formula works if you divide A and B into sub or block matrices.

A =

A11 · · · A1n
...

...
Am1 · · · Amn

 , B =

B11 · · · B1k
...

...
Bn1 · · · Bnk

 (11)

AB =

 A11B11 + · · ·+ A1nB1n · · · A11B1k + · · ·+ A1nBnk
...

...
Am1B11 + · · ·+ AmnB1n · · · Am1B1k + · · ·+ AmnBnp

 (12)

Note that we can divide up A and B into any size sub-blocks as long as the inner dimensions of
each appropriate Aij and Bjk match. Two specific interesting cases are if we divide up A and B
into columns or rows. Dividing A into rows and B into columns gives

AB =

− A1: −
...

...
− An: −


 | · · · |
B:1 B:p

| · · · |

 =

A1:B:1 · · · A1:B:p
...

...
Am:B:1 · · · Am:B:p

 (13)

Here we are taking the inner products of each row of A with each column of B. . We could also
divide up A into columns and B into rows.

AB =

 | · · · |
A:1 A:n

| · · · |


− B1: −

...
...

− Bn: −

 =

 |
A:1

|

 [− B1: −
]
+ · · ·+

 |
A:n

|

 [− Bn: −
]

(14)

Note that here, we have computed the sum of the outer products of the matched columns of A and
rows of B.

We also note the following useful extension of this concept. Consider A ∈ Rm×n M ∈ Rn×p,
and B ∈ Rp×q. Using the inner product form above, we can compute

AMB =

A1:MB:1 A1:MB:q
...

...
Am:MB:1 Am:MB:q

 (15)

6



It is worth noting that [AMB]ij = Ai:MB:j Using the outer product form, we can compute

AMB =
∑
k

∑
l

 |
A:k

|

Mkl

[
− Bl: −

]
(16)

Note that Mkl gives the scaling factor for the dyad A:kBl:. In (14), we have taken M to be the
identity. Some other common and useful examples of block matrix multiplication are given by

AB = A
[
B1 · · · Bk

]
=
[
AB1 · · · ABk

]
(17)

Note in this example, if each Bj is a column, we can think of the matrix A as transforming each
column separately.

AB =

A1
...
An

B =

A1B
...

AnB

 (18)

AB =
[
A1 · · · An

] B1
...
Bn

 = A1B1 + · · ·+ AnBn (19)

AB =

A1
...

Am

 [B1 · · · Bk

]
=

A1B1 · · · A1Bk
...

...
AmB1 · · · AmBk

 (20)

2 Inner Products
Vectors contain both the notion of length and direction. While magnitude is a property that vectors
share with regular numbers, direction is a uniquely vector property.

As such we can talk about the relative magnitude of two vectors and we can also talk about
whether or not they point in similar directions, opposite directions or whether they are "perpendic-
ular" or "orthogonal" to each other. The "inner product" or "dot product" of two vectors is at the
heart of this direction comparison.

Definition
The inner product, denoted by ⟨·, ·⟩, between two vectors x, y ∈ Rn is given by

⟨y, x⟩ =
∑
i

yixi = yTx = ∥y∥2∥x∥2 cos(θ)

The expression yTx uses matrix multiplication notation; yT is a row vector and x as a column
vector. (This expression is perhaps the most clean and useful algebraically.) The final expression
∥y∥∥x∥2 cos(θ) is the geometric definition of an inner product that we will consider more below.
∥y∥2 and ∥x∥2 are the magnitudes of x and y and θ is the angle between the two vectors.

7



Geometry of Inner Products
The geometry of the inner product can be seen by considering the law of cosines (an extension of
the Pythagorean theorem) detailed in the image below.

Note that the law of cosines is an extension of the Pythagorean theorem in that it gives a
correction term for when θ ̸= π/2. This correction term is closely related to the inner product
between the vectors that form the sides of the triangle. Consider the norm (squared) of the vector
difference x− y

(x− y)T (x− y) = xTx+ yTy − 2yTx

The law of cosines gives that the last term can be expressed as

2yTx = 2∥y∥2∥x∥2 cos(θ)

which gives the geometric interpretation of the inner product. Note from this definition if two vec-
tors x and y point in similar directions (small θ) then yTx will be larger; if they are perpendicular
(θ = π/2) then yTx = 0 and if they point in opposite directions (θ closer to π) then yTx will
be negative. The inner product is closely related to length of one vector after it is projected onto
another. Specifically if y is a unit vector, then yTx is exactly the length of x after it is projected
onto y as shown in the image below.

Visualizing Scalar Multiplication
To better visualize the geometry of the inner product, we first consider scalar multiplication of two
real numbers in the following way. For the product of any two real numbers x, y ∈ R, we can think
of x as a step-size and y as how many steps we take (not necessarily an integer). On a number
line, We can think of this as re-defining a unit for y as x. Visually this is equivalent to dragging the
value of 1 on the y number line to the value of x and allowing y to be stretched as well.

As 1 goes to x, y will go to xy.
If x is greater than 1, y gets stretched away from the origin; if x is less than one then y gets

shrunk toward the origin. If the sign of x is negative then y also gets flipped to the otherside of
the numberline. The value x = 1 is special in that it leaves y unchanged and x = −1 leaves the
magnitude of y unchanged but just flips the side of the numberline. We can illustrate this property
in the figure below.

Visualizing Inner Products
Unlike scalars, vectors contain both the notion of length and direction. If a scalar has some notion
of direction it is simply a binary value ±1, ie. is the number positive or negative. This "direc-
tion" determines whether or not multiplying by this number flips the direction of another number.
Inner products can be thought of as expanding this binary value of ±1 to a full 360o of relative
orientation. Rather than simply flipping the sign of the vector product based on the directions of
the vectors, inner product compares their relative direction and then multiplies by a number in the
interval [−1, 1] given by cos(θ)

8



9



To adjust the visualization of scalar multiplication above to apply to inner products we first
note that a unit step for y now includes a direction as well as a length. When taking the inner
product rather than redefining the unit vector in the y direction as x, we can find the vector in the
y direction, v, that would project to the unit vector in the x direction and redefine that vector as x.
If we let, y get stetched in the same way, the resulting length of the stretched y will be yTx. This
is visualized in the diagram below. Note that when we move v to x, y moves along a parallel line.

The vector v can be thought of as how far we have to go in the y-direction to get to one unit in
the x direction. If x and y point in the same direction, then v just has length one (and this picture
reduces to the scalar picture) but the more x and y point in different directions the larger the vector
v gets, ie. the farther you have to go in the y direction to move one unit in the x direction. For
large v the action of stretching v to x actually ends up shrinking y and so yTx becomes small. (The
diagrams below are dense and worth considering slowly.)

Several other special cases are worthy of note. If x is just a unit vector this operation ends up
just giving the length of y projected onto the direction of x. This idea of projection is at the heart of
the difference between inner products and scalar products. Scalar products just scale the magnitude
of the thing they multiply; inner products both scale and project the things they multiply. Another
special case is when y and x are perpendicular. Here the visualization above reaches a limiting
case where the vector v shoots off to infinite. Dragging v to x then shrinks y to 0. Intuitively since
y does not point in the direction of x at all, we have to go out to infinite to move one unit in the x
direction.

The algebra of this visualization is the following. v is the vector in the y-direction such that
vT x

∥x∥2 = ∥v∥|2 cos θ = 1. Since v and y point in the same direction, we can define y = βv, ie. y
is just a scaled version of v. We then get that

yTx = βvT x
∥x∥2∥x∥2 = β∥x∥2

ie. the same scaling (β) that scales v to y also scales x to a vector with length yTx. The geometric
interpretation above is just this visualized using similar triangles.

ORTHOGONALITY
One of the fundamental notions associated with inner products is the idea of orthogonality. Two
vectors are orthogonal if they are perpendicular, ie. the angle between them is θ = π

2
. Intuitivley,

if two vectors are orthogonal they represent entirely separate directions that do not affect each
other, ie. the projection of one vector onto the other is 0. For a vector x ∈ Rn, the set of vectors
orthogonal to x has dimension n − 1. Subspaces are often defined as being orthogonal to some
vector or set of vectors (see the discussion of nullspaces).

Inner Products and Quadratic Forms
Note: this section is better understood with background in positive definite matrices.

We can generalize the Euclidean inner product with a positive definite symmetric matrix P ≻ 0,
P = P T ∈ Rn×n to get the P -inner product defined as

10



11



⟨y, x⟩P = ∥x∥P = yTPx

Rather than a uniform, spherical geometry, this inner product induces an ellipsoidal geometry. One
interpretation of this inner product is that each vector x and y is transformed (stretched) using the

coordinate transfromations x′ = P
1
2x and y′ = P

1
2y before the regular Euclidean inner product

is applied. The unit ball xTPx = 1 is ellipsoidal rather than spherical in the x-coordinates (but
it is spherical in the x′-coordinates). A projection in this ellipsoidal geometry does not follow
perpendicular lines but rather lines tangent to the unit ball. Since the ellipsoid changes based on
direction, the directions of projection change with direction as well. The visualization of the inner
product given above is similar but now the unit vector in the x-direction is shown by the ellisoid
and v is the intersection of the y-direction and the tangent space to the ellipsoid where x crosses it.
This new geometry is illustrated in the diagram below.

Note that for the P -inner product, orthogonality, ie. yTPx = 0, does not imply that the angle
between the two vectors is 90o. Graphically, orthogonality is better understood as one vector being
parallel to a tangent vector where the other vector crosses the unit ball. This is illustrated below
and discussed more in the section on orthogonality.

COLUMN-COORD GEOMETRY

Another perspective on the inner product yTx (perhaps closer to the notion of matrix multiplica-
tion) is to think of the row vector yT as a set of columns (each of length) one and then x as a set of
coordinates. We can then visualize the inner product in the following way.

3 Derivatives

Vector Derivatives
Derivatives are linear maps that convert perturbations in function arguments into perturbations in
the function themselves. Consider x ∈ Rn and f : Rn → R. f(x) is a scalar. The derivative ∂f

∂x
is

the row vector
∂f

∂x
=
[

∂f
∂x1

· · · ∂f
∂xn

]
such that

∆f ≈ ∂f

∂x
∆x =

[
∂f
∂x1

· · · ∂f
∂xn

]∆x1
...

∆xn

 (21)

where ∆f ∈ R and ∆x ∈ Rn are perturbations in f and x, respectively. Note that if f is linear,
ie. f(x) = b⊤x, then ∂f

∂x
= b⊤. Note that the perturbation form in (21) can be useful in computing

vector derivatives in tricky situations. For example, suppose f(x) = x⊤Qx + b⊤x. In order to
compute the derivative, we can perturb each instance of x separately and add up the perturbations.

12



13



(The ability to perturb each instance of x separately is called the product rule.) Then we rearrange
the right hand side (RHS) into the form of (21).

∆f = ∆x⊤Qx+ x⊤Q∆x+ b⊤∆x (22)

Noticing that each of the terms in the RHS is a scalar, we can transpose as necessary.

∆f = (∆x⊤Qx)⊤ + x⊤Q∆x+ b⊤∆x (23)

=
(
x⊤(Q+Q⊤) + b⊤

)
∆x (24)

⇒ ∂f

∂x
= x⊤(Q+Q⊤) + b⊤ (25)

Now suppose f(x) is a vector valued function f : Rn → Rn. The derivative is now an m × n
matrix

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 (26)

such that

∆f =

∆f1
...

∆fm

 ≈ ∂f

∂x
∆x =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn


∆x1

...
∆xn

 (27)

where ∆f ∈ Rm and ∆x ∈ Rn. Note that when ∂f
∂x

is a matrix it is referred to as a Jacobian.
Now suppose we have a scalar function f(x) and we want to compute its second derivative.

Differentiating once gives

∂f

∂x
=
[

∂f
∂x1

· · · ∂f
∂xn

]
(28)

Now treating ∂f
∂x

as a vector valued function, we can compute the second derivative

∂2f

∂x2
=


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n

 (29)

The matrix ∂2f
∂x2 is symmetric since ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
and is referred to as the Hessian of the function

f(x). Second derivatives are used to approximate perturbations of first derivatives

∆
∂f

∂x
≈ ∆x⊤∂

2f

∂x2
=

∆x1
...

∆xn


⊤


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n

 (30)

14



For the quadratic function f(x) = x⊤Qx+b⊤x, we can use the perturbative perspective to compute

∆
∂f

∂x
= ∆x⊤∂

2f

∂x2
= ∆x⊤(Q+Q⊤) ⇒ ∂2f

∂x2 = Q+Q⊤ (31)

Note that often we write ∂2f
∂x2 = 2Q. This is consistent with above formula assuming that Q = Q⊤

is symmetric. Any time we consider a quadratic form x⊤Qx, we assume that Q is symmetric. The
reason for this is that if it’s not symmetric, only the symmetric part of it affects the product x⊤Qx.
Explicitly, write

x⊤Qx = x⊤
(

1
2

(
Q+Q⊤)+ 1

2

(
Q−Q⊤))x

= 1
2
x⊤(Q+Q⊤)x+ 1

2
x⊤(Q−Q⊤)x

= 1
2
x⊤(Q+Q⊤)x+ 1

2
x⊤Qx− 1

2
x⊤Q⊤x︸ ︷︷ ︸

=0

The first part of the expansion is the symmetric part of Q. The second part is the skew symmetric
part and x⊤Kx = 0 for any K = −K⊤ (K is skew-symmetric).

Using this structure, we also comment on how to express a vector valued Taylor expansion. Up
to the quadratic term a Taylor expansion for f(x) around a point x0 is given by

f(x) = f(x0) +
∂f

∂x

∣∣∣∣
x0

∆x+∆x⊤∂
2f

∂x2

∣∣∣∣
x0

∆x+ · · · where ∆x = x− x0

Note how this relates to the perturbation analysis ideas discussed above.

Chain Rule
One important practical tool for taking vector derivatives is the chain rule. One of the reasons to
be careful about how we arrange vector derivatives, and particularly to write the derivative of a
function f : Rn → Rm as an m× n matrix ∂f

∂x
∈ Rm×n is so that it is easy to apply the chain rule

consistent with the rules of multiplication. Specifically, consider several functions

h(z) : Rq → Rm, g(y) : Rp → Rq, f(x) : Rn → Rp

The derivatives of each function are matrices

∂h

∂z
∈ Rm×q,

∂g

∂y
∈ Rq×p,

∂f

∂x
∈ Rp×n

Suppose these functions are now composed together u(x) = h
(
g
(
f(x)

))
. The derivative of u(x)

with respect to x can then be computed as

∂u

∂x
=

∂

∂x

(
h
(
g
(
f(x)

)))
=

[
∂h

∂z

] [
∂g

∂y

] [
∂f

∂x

]

15



Carefully note the order of the vector derivative matrices and also how the dimensions of each
matrix match up for the matrix multiplication to work. Note also how our perturbation analysis
goes through.

∆u =
∂u

∂x
∆x =

[
∂h

∂z

] [
∂g

∂y

] [
∂f

∂x

]
∆x︸ ︷︷ ︸

∆y︸ ︷︷ ︸
∆z

To be completely accurate we have to be careful to plug in the correct argument to each derivative
matrix and thus we should write

∂u

∂x
=

∂h

∂z

∣∣∣∣
g(h(x))

∂g

∂y

∣∣∣∣
f(x)

∂f

∂x

∣∣∣∣
x

As an example consider the function u(x) = e−
1
2
y⊤Qy where y = Hx for y ∈ Rp and H ∈ Rp×n.

(This is essentially the equation for a slice of a multivariate Gaussian.). Here we can take

h(z) = ez, g(y) = −1
2
y⊤Qy, f(x) = Hx

with derivatives

∂h

∂z
= ez ∈ R1×1,

∂g

∂y
= −1

2
y⊤(Q+Q⊤) ∈ R1×p,

∂f

∂x
= H ∈ Rp×n

Plugging in y = Hx and z = −1
2
y⊤Qy gives

∂u

∂x
= −ez

∣∣∣
−1
2
x⊤H⊤QHx

1
2
y⊤(Q+Q⊤)

∣∣∣
Hx

H

= −1
2
e−

1
2
x⊤H⊤QHxx⊤H⊤ 1

2

(
Q+Q⊤)H

= −1
2
e−

1
2
x⊤H⊤QHxx⊤H⊤QH

where in the last line we’ve assumed Q is symmetric. Note carefully how all the dimensions work
out so that the above expression is consistent with the rules of matrix multiplication. Again, the
fact that the dimensions work out is not a fluke but rather because we were careful to be consistent
with our definition of derivatives and application of the chain rule.

Matrix Derivatives
We now consider taking derivatives of functions F (X) where either the input X or the output F
are matrices. The perturbation analysis from above works exactly the same, but these are generally
trickier to write down because they are usually higher (more than two) dimensional tensors. The
one exception which we will deal with first is when either X or F is simply a scalar.

16



We start with the case where X is a scalar, F : R → Rm×n. In this case, we will usually define

∂F

∂X
=


∂F11

∂X
· · · ∂F1n

∂X
...

...
∂Fm1

∂X
· · · ∂Fmn

∂X

 (32)

The perturbation analysis can then be written as

∆F ≈=
∂F

∂X
∆X =


∂F11

∂X
· · · ∂F1n

∂X
...

...
∂Fm1

∂X
· · · ∂Fmn

∂X

∆X

Each element of ∂F
∂X

is simply the scalar derivative of the corresponding element of F with respect
to X .

[
∂F
∂X

]
ij
=

∂Fij

∂X
.

We now consider the case where F is a scalar and X is a matrix, F : Rm×n → R. In this case,

∂F

∂X
=


∂F

∂X11
· · · ∂F

∂Xij

...
...

∂F
∂Xm1

· · · ∂F
∂Xmn

 (33)

Note the similarities and differences with (32). The perturbation analysis will involve summing
over all elements of ∂F

∂X
. We could, for example, write

∆F =
∑
ij

∂F
∂Xij

∆Xij

However, in many practical problems, scalar functions of matrices are written in terms of quadratic
forms or trace operators such as F (X) = a⊤Xb with a ∈ Rm, b ∈ Rn or F (X) = Tr(C⊤X) with
C ∈ Rm×n. It is worth knowing how to deal with these cases specially. Our analysis will leverage
properties of the trace operator and Euclidean matrix inner product ⟨C,X⟩ = Tr(C⊤X).

Paralleling the notation of a vector dot product, the basic inner product on the space of matrices
is

⟨Y,X⟩ =
∑
ij

YijXij = Tr(Y ⊤X)

Here we simply match up the corresponding elements of Y and X and sum over them. One can
check that the final expression Tr(Y ⊤X) does exactly this. (In practice, one would not compute
the full product Y ⊤X in order to calculate this inner product cause only the diagonal is needed,
but it is quite useful for analytic purposes.). Using this inner product idea, we can rewrite our
perturbation analysis as

∆F =
∑
ij

∂F
∂Xij

∆Xij =

〈
∂F

∂X
,∆X

〉
= Tr

(
∂F

∂X

⊤
∆X

)
(34)

17



Again, this can be a useful way to think of ∂F
∂X

, it is the matrix object that if we take the matrix inner
product of it with a perturbation ∆X then we get the perturbation in F , ∆F . The trace expression
can also be quite useful because it is often easy to write our function F (X) in a form that looks
like the far RHS of (34). We give several examples. The function F (X) = Tr(C⊤X) is in this
form already and we immediately have that

F (X) = Tr(C⊤X) =⇒ ∂F

∂X
= C

The function F (X) = a⊤Xb is a little trickier, but since it is a scalar value we can put it inside
a trace operator without changing it, ie. F (X) = Tr(F (X)) = Tr(a⊤Xb). (This is always possible
for any scalar function F ). We can then leverage the cyclic property of traces.

Tr(ABCD) = Tr(DABC) = Tr(CDAB) = Tr(BCDA)

assuming that ABC was square in the first place. (It is worth playing around with this formula
and convincing yourself that is true as well as seeing how the dimensions of A,B,C,D come into
play. The only requirement for this to work is that ABCD is square (and that the dimensions of
A,B,C,D are compatible for the original multiplication.) For this reason, trace algebra is actually
quite pleasant because you can change the order of matrices in a product (which is not possible
when the product is not inside a trace). Returning to our original formula we can write

F (X) = a⊤Xb = Tr(a⊤Xb) = Tr(ba⊤X) =⇒ ∂F

∂X
= ab⊤

Similarly for F (X) = Tr
(
AXB), we can write

F (X) = Tr(AXB) = Tr(BAX) =⇒ ∂F

∂X
= A⊤B⊤

In any practical setting where one is taking derivatives with respect to matrices, being able to
use these algebraic tricks involving traces is crucial. Trying to compute out each element of (33)
individually and then organize them back into a usable expression is not doable.

4 Projections

Projection onto a Vector
One of the fundamental uses of inner products is to compute projections. A projection of a vector
x onto y, which we can denote projyx, is the closest vector to x that points precisely in the y
direction. We illustrate this in the figure below.

Intuitively one can see that the difference between x and projyx must be orthogonal to y.
(Mathematically, this comes from the Pythagorean theorem applied to x − projyx). We can also
see intuitively that the length of the projection is ||x||2 cos θ where θ is the angle between x and y

18



and can thus be related to the inner product using the geometric definition yTx = ||x||2||y||2 cos θ
If a vector y is a unit vector, than the geometric definition of an inner product gives that the length
of the projection is simply yTx. Algebraically, then, the process of computing a projection is
can be done by converting y to a unit vector (ie. y

||y||2 ) taking the inner product with x to get the
length of the projection and then multiplying that length by the unit vector again in the y direction.
Formulaically, we have that

projyx =

(
1

||y||2
y

)(
1

||y||2
yTx

)
= y(yTy)−1yTx

The second version in the equation above is elegant in that it explicitly writes the projection
operator as a matrix that we can then use to project any vector x onto y. We can denote this matrix
projy = y(yTy)−1yT . We will also see that this form is directly extendable to projecting onto a
subspace of dimension greater than one.

If we want to get the component of x orthogonal to y we can simply subtract the projection
from x. This can be called the projection orthogonal to y.

proj⊥y x = x− y(yTy)−1yTx =
[
I − y(yTy)−1yT

]
x

Note that again we have managed to write the projection operation as a matrix which we can denote
proj⊥y = I − y(yTy)−1yT .

It is instructive to check that for any x, projyx and proj⊥y x are orthogonal to each other. We can
check this actually independent of x as follows(

projyx
)Tproj⊥y x = xTy(yTy)−1yT

(
I − y(yTy)−1yT

)
x

= xT
(
y(yTy)−1yT − y(yTy)−1yTy(yTy)−1yT

)
x

= xT
(
y(yTy)−1yT − y(yTy)−1yT

)
x = xT (0)x = 0

Note the fact that projy(projy) = projy.

Projection onto a Subspace
A similar formulation works if we would like to project x onto a a subspace spanned by multiple
vectors given by the columns of a matrix Y ∈ Rm×n

Y =

 | |
Y1 · · · Yn

| |


We will assume for this discussion the columns of Y are linearly independent and we will denote
this as projY x.

19



20



As in the one dimensional case above, we proceed by converting columns of Y into unit vectors,
but for multi-dimensional subspaces there is another subtlety; we must make the columns of Y
orthogonal to each other as well. To see this consider a counter-example for two vectors Y1 and
Y2. A naive approach would be to normalize each vector Yi, project x onto each and add up the
projections according to the formula

projY x = projY1
x+ projY2

x

This is, in general, an incorrect approach as illustrated in the left figure below Unless, Y1 and Y2 are
orthogonal to each other the result will not give the desired projection. If, however, the columns of
Y are orthonormal as illustrated in the right figure.

The process of orthonormalizing the columns of Y is more complicated than normalizing a
single vector. We will discuss this in much more detail in the section on orthonormalization and in
the section on shape matrices and polar decomposition. For now we will simply give the following
formula. If we take

U = Y (Y TY )−
1
2

the columns of U are orthonormal to each other and span the same space as Y . Critically, we can
check that the columns of U are orthonormal by taking all the pairwise inner products of each
column.

UTU = (Y TY )−
1
2Y TY (Y TY )−

1
2 = I

Here we note that the matrix (Y TY )
1
2 is invertible if and only if the columns of Y are linearly

independent. We note also that there is a specific relationship between the columns of U and Y
that we will discuss more in later sections.

We then can compute the projection of x onto the span of Y by projecting x onto each column
of U and summing up.

projyx = U1U
T
1 x+ · · ·UnU

T
n x = UUTx

Note that the second equality is based on the outer product formulation of matrix multiplication.
Expanding this out in terms of the original matrix Y now gives

projyx = Y (Y TY )−
1
2 (Y TY )−

1
2Y Tx = Y (Y TY )−1Y Tx

Here we can denote the projection matrix as projY = Y (Y TY )−1Y T . Note the similarities to the
one-dimesional form and specifically the similar role of (yTy)−1 and (Y TY )−1 in the two formulas.

Similarly, we can compute a projection orthogonal to the span of Y as

proj⊥Y x = x− Y (Y TY )−1Y Tx =
(
I − Y (Y TY )−1Y T

)
x

with projection matrix proj⊥Y =
(
I − Y (Y TY )−1Y T

)
. Finally, we can check again algebraically

that for any x, projY x and proj⊥Y x are orthogonal (as desired) regardless of what x is.(
projY x

)Tproj⊥Y x = xTY (Y TY )−1Y T
(
I − Y (Y TY )−1Y T

)
x

= x
(
Y (Y TY )−1Y T − Y (Y TY )−1Y TY (Y TY )−1Y T

)
x

= x
(
Y (Y TY )−1Y T − Y (Y TY )−1Y T

)
x = xT (0)x = 0

We now give a detailed visualization of the process discussed above.

21



More Abstraction: Abstract Projection Definitions

Generally in math, a projection operator is an operator such that applying the operator twice yields
the same result as applying it once, ie.

(projY )(projY ) = projY
This is enough to imply the orthogonality conditions we expect above since it implies that(

projY x
)T (

I − projY
)
x = xT

(
projY − (projY )projY

)
x = xT

(
projY − projY

)
x = xT (0)x = 0

We also can check that this true for for the matrix operators above

projY (projY ) = Y (Y TY )−1Y TY (Y TY )−1Y T = Y (Y TY )−1Y T = projY
and

proj⊥Y (proj⊥Y ) =
(
I − Y (Y TY )−1Y T

)(
I − Y (Y TY )−1Y T

)
= I − 2Y (Y TY )−1Y T + Y (Y TY )−1Y TY (Y TY )−1Y T

= I − 2Y (Y TY )−1Y T + Y (Y TY )−1Y T = I − Y (Y TY )−1Y T = proj⊥Y

5 Complex Numbers
• Complex number: z ∈ C.

• Cartesian representation: z = a+ bi

– Vector-like addition: z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i

– Norm (length): |z| =
√
z∗z =

√
(a− bi)(a+ bi) =

√
a2 + b2

– Conjugate: z∗ = z̄ = a− bi.
– Inverse and Conjugate Inverse:

z−1 =
1

a+ bi
=

a− bi

(a+ bi)(a− bi)
=

a√
a2 + b2

+
−b√
a2 + b2

i

z−∗ = z̄−1 =
1

a− bi
=

a+ bi

(a− bi)(a+ bi)
=

a√
a2 + b2

+
+b√
a2 + b2

i

– Multiplication: z1z2 = (a1 + b1i)(a2 + b2i) = a1a2 + (a1b1 + a2b2)i+ b1b2.

 

Im
eia if
I e E

re
unit
circle rEELeiaq

E eio Retin
Q ifatbi

9 ie 2 re
e

lo

a Re
10 Im z za qrzeilQt

2 a bi
Q

Zzqei0z

Ey02 OZ reiQ
lion Re

A

Im z tZc altarAitaz
a Z

O
bitty

8 10,1102101

q 22
102

92 Re

 

Im
eia if
I e E

re
unit
circle rEELeiaq

E eio Retin
Q ifatbi

9 ie 2 re
e

lo

a Re
10 Im z za qrzeilQt

2 a bi
Q

Zzqei0z

Ey02 OZ reiQ
lion Re

A

Im z tZc altarAitaz
a Z

O
bitty

8 10,1102101

q 22
102

92 Re

22



• Polar representation: z = reiθ, r ≥ 0

– Relationship to Cartesian representation:

z = a+ bi = r cos(θ) + r sin(θ)i,

z = reiθ =
√
z∗zeitan−1(ab ) =

√
a2 + b2eitan−1(ab )

– Stretching and Rotation:
The polar represents the stretching and rotational components of a complex number.

z = r︸︷︷︸
Stretching

by r

eiθ︸︷︷︸
Rotation

by θ

– Conjugate: z∗ = z̄ = re−iθ.

– Inverse and Conjugate Inverse:

z−1 = 1
r
e−iθ

z−∗ = z̄−1 = 1
r
eiθ

– Multiplication: z1z2 = r1r2e
iθ1eiθ2 = r1r2e

i(θ1+θ2)

• Roots of Unity:

– Solutions to the equation: zn = 1.

– n solutions:

z = ei
2πk
n , for k = 0, 1, 2, . . . , n− 2, n− 1

– Each solution corresponds to an angle step size ∆θ = 2πk
n

and powers of z = ei
2πk
n

represent stepping around the circle. k corresponds to the number of rotations around
the unit circle before returning to 1. k = 0 is zero rotations, k = 1 is one rotation,
k = 2 is two rotations, etc.

– Alternative enumeration of solutions corresponding to rotating in reverse:

z = ei
2π(−k′)

n , for k′ = n, (n− 1), . . . , 2, 1

by the relationship k = n− k′

z = ei
2π(−k′)

n = ei
2π(−k′)

n ei
2πn
n = ei

2π(n−k′)
n = ei

2πk
n

Pairs: k = (n− 1) and −k′ = −1, k = (n− 2) and −k′ = −2, etc.

23



Im ZQ Z L 252 Imi2I 23 1
e 3 0

IT i2zI0 Im e ie'T L
a Re Rei2I

ZEE 1

i2gIz
e
i2I

e 3

4 Im iz i 3Z L e4 c 4 25 1
Im

ei 2 jisI3 ei e 4

i2Iz i z i2Io
4 c 4 1 E 4 I i2IoRe e5 1

Re

i2I3 i2Iz i2I4 is s s si2I3 i e e e c4 4e e

Im eizIE.ci 6
Cl eies eit's izI_i2I78

c8iE4eeiE4 e ei 0 1e
Re

8
2 L i 7 i2I8 8C

gilts e 3 i 6 izzC i

Im ZQ Z L 252 Imi2I 23 1
e 3 0

IT i2zI0 Im e ie'T L
a Re Rei2I

ZEE 1

i2gIz
e
i2I

e 3

4 Im iz i 3Z L e4 c 4 25 1
Im

ei 2 jisI3 ei e 4

i2Iz i z i2Io
4 c 4 1 E 4 I i2IoRe e5 1

Re

i2I3 i2Iz i2I4 is s s si2I3 i e e e c4 4e e

Im eizIE.ci 6
Cl eies eit's izI_i2I78

c8iE4eeiE4 e ei 0 1e
Re

8
2 L i 7 i2I8 8C

gilts e 3 i 6 izzC i

Im ZQ Z L 252 Imi2I 23 1
e 3 0

IT i2zI0 Im e ie'T L
a Re Rei2I

ZEE 1

i2gIz
e
i2I

e 3

4 Im iz i 3Z L e4 c 4 25 1
Im

ei 2 jisI3 ei e 4

i2Iz i z i2Io
4 c 4 1 E 4 I i2IoRe e5 1

Re

i2I3 i2Iz i2I4 is s s si2I3 i e e e c4 4e e

Im eizIE.ci 6
Cl eies eit's izI_i2I78

c8iE4eeiE4 e ei 0 1e
Re

8
2 L i 7 i2I8 8C

gilts e 3 i 6 izzC i

Im ZQ Z L 252 Imi2I 23 1
e 3 0

IT i2zI0 Im e ie'T L
a Re Rei2I

ZEE 1

i2gIz
e
i2I

e 3

4 Im iz i 3Z L e4 c 4 25 1
Im

ei 2 jisI3 ei e 4

i2Iz i z i2Io
4 c 4 1 E 4 I i2IoRe e5 1

Re

i2I3 i2Iz i2I4 is s s si2I3 i e e e c4 4e e

Im eizIE.ci 6
Cl eies eit's izI_i2I78

c8iE4eeiE4 e ei 0 1e
Re

8
2 L i 7 i2I8 8C

gilts e 3 i 6 izzC i

– Roots of unity can be used to define oscillating signals in discrete time.

Let F k ∈ Cn be defined as
[
F k
]
t
= e

(
i
2πk
n

)
t
, ie.

F k =

[
e

(
i
2πk
n

)
0

e

(
i
2πk
n

)
1

· · · e

(
i
2πk
n

)
(n−1)

]T
In discrete time Fourier analysis, we often use the matrix DFT (discrete Fourier trans-
form) matrix F ∈ Cn×n.

F =
[
F 0 F 1 · · · F n−1

]

=


e

(
i
2π0×0

n

)
e

(
i
2π0×1

n

)
· · · e

(
i
2π0×(n−1)

n

)

e

(
i
2π1×0

n

)
e

(
i
2π1×1

n

)
· · · e

(
i
2π1×(n−1)

n

)
...

... . . . ...

e

(
i
2π(n−1)×0

n

)
e

(
i
2π(n−1)×1

n

)
· · · e

(
i
2π(n−1)×(n−1)

n

)



=


1 1 · · · 1

1 e

(
i
2π1×1

n

)
· · · e

(
i
2π1×(n−1)

n

)
...

... . . . ...

1 e

(
i
2π(n−1)×1

n

)
· · · e

(
i
2π(n−1)×(n−1)

n

)


24



Im ZQ Z L 252 Imi2I 23 1
e 3 0

IT i2zI0 Im e ie'T L
a Re Rei2I

ZEE 1

i2gIz
e
i2I

e 3

4 Im iz i 3Z L e4 c 4 25 1
Im

ei 2 jisI3 ei e 4

i2Iz i z i2Io
4 c 4 1 E 4 I i2IoRe e5 1

Re

i2I3 i2Iz i2I4 is s s si2I3 i e e e c4 4e e

Im eizIE.ci 6
Cl eies eit's izI_i2I78

c8iE4eeiE4 e ei 0 1e
Re

8
2 L i 7 i2I8 8C

gilts e 3 i 6 izzC i

Rele 04 1 Refe 4T
1 1

ti n I I D tr n I I B2 if 6 8 2 if 6 8
s s

Rele tf Refeisttf tzfe.istteisIt Im just
I I

t tl l p I B I I I I D
2 if 6 8 2 if 6 8

s I g feistyin

peqe.ie RefeiEItf EfeiE2tteiEt ImgeizIt
I I

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
ImfeiEI

yrele.IERefeiEbtJ EfeiF3teifIt
1

Imfeisty1

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
Imf tf

Rele 04 1 Refe 4T
1 1

ti n I I D tr n I I B2 if 6 8 2 if 6 8
s s

Rele tf Refeisttf tzfe.istteisIt Im just
I I

t tl l p I B I I I I D
2 if 6 8 2 if 6 8

s I g feistyin

peqe.ie RefeiEItf EfeiE2tteiEt ImgeizIt
I I

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
ImfeiEI

yrele.IERefeiEbtJ EfeiF3teifIt
1

Imfeisty1

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
Imf tf

Rele 04 1 Refe 4T
1 1

ti n I I D tr n I I B2 if 6 8 2 if 6 8
s s

Rele tf Refeisttf tzfe.istteisIt Im just
I I

t tl l p I B I I I I D
2 if 6 8 2 if 6 8

s I g feistyin

peqe.ie RefeiEItf EfeiE2tteiEt ImgeizIt
I I

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
ImfeiEI

yrele.IERefeiEbtJ EfeiF3teifIt
1

Imfeisty1

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
Imf tf

Rele 04 1 Refe 4T
1 1

ti n I I D tr n I I B2 if 6 8 2 if 6 8
s s

Rele tf Refeisttf tzfe.istteisIt Im just
I I

t tl l p I B I I I I D
2 if 6 8 2 if 6 8

s I g feistyin

peqe.ie RefeiEItf EfeiE2tteiEt ImgeizIt
I I

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
ImfeiEI

yrele.IERefeiEbtJ EfeiF3teifIt
1

Imfeisty1

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
Imf tf

Rele 04 1 Refe 4T
1 1

ti n I I D tr n I I B2 if 6 8 2 if 6 8
s s

Rele tf Refeisttf tzfe.istteisIt Im just
I I

t tl l p I B I I I I D
2 if 6 8 2 if 6 8

s I g feistyin

peqe.ie RefeiEItf EfeiE2tteiEt ImgeizIt
I I

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
ImfeiEI

yrele.IERefeiEbtJ EfeiF3teifIt
1

Imfeisty1

t tr n I I D l n I I D
2 if 6 8 2 if 6 8

s s
Imf tf

The columns of F can be used to represent time oscillating signals. In discrete time

25



Fourier analysis a time (or phase) shift of k
n

Hz can be represented by the root of unity

e

(
i
2πk
n

)
. Multiplying F k by e

(
i
2πk
n

)
shifts each element of the vector up one spot and

moves the first element to the end.

e

(
i
2πk
n

)
F k = e

(
i
2πk
n

) [
e

(
i
2πk
n

)
0

e

(
i
2πk
n

)
1

· · · e

(
i
2πk
n

)
(n−1)

]T
=

[
e

(
i
2πk
n

)
1

e

(
i
2πk
n

)
2

· · · e

(
i
2πk
n

)
(n−1)

e

(
i
2πk
n

)
0

]T
‘

Linear combinations and linear dependence
For the following define

x ∈ Rn, y ∈ Rm, A =

 | |
A1 · · · An

| |


• A vector y is linear dependent on the columns of a matrix A ∈ Rm×n

if ∃ x ∈ Rn s. t. y = Ax or (equivalently) y =
∑
i

Aixi

• A set of vectors (the columns of A) is linearly dependent if at least one vector is dependent
on the others.

Ai =
∑
j ̸=i

Ajx
′
j

for some i and {xj}j ̸=i. A useful characterization is the columns of A are linearly depen-
dent

if ∃ x ∈ Rn, x ̸= 0 s. t. Ax = 0

Indeed for some i

Aixi = −
∑
j ̸=i

Ajxj, ⇒ Ai =
∑
j ̸=i

Aj
−xj

xi
=
∑
j ̸=i

Ajx
′
j

• A vector y is linearly independent on the columns of A, if it is not linearly dependent on
them, i.e. there does not exist x ∈ Rn such that y = Ax.

26



• A set of vectors (cols of A) is linear independent if none of the columns are linearly de-
pendent on the others. A useful characterization is

Ax = 0 ⇒ .x = 0

• All linear combinations of a set of vectors is the span of those vectors.

R3
A1

A2

y
R3

A1

A2

y

   , linearly dependent  
on       ,      .
y

A1 A2

   , linearly independent  
from       ,      .
y

A1 A2

Rank
• Column rank: # number of linearly independent columns.

• Row rank: # number of linearly independent columns.

• Rank: Column rank=Row rank=Rank

The column-rank of a matrix is the dimension of the column space of A, R(A). The row-rank
of a matrix is the dimension of the row space, R(AT ). The column rank and row rank are always
equal and are simply called the rank of A, denoted rk(A).

Column rank = row rank

Proof: Let the column rank be denoted by k and the row rank be denoted by r.
If A ∈ Rm×n has column rank k then there exists C ∈ Rm×k with linearly independent columns

such that

A = CV

27



where the columns of V ∈ Rk×n are the coordinates of the columns of A with respect to the (basis)
columns of C. Thinking of the rows of C as coefficients of linear combinations of the rows of V
and realizing that V has k rows, we have that the dimension of R(AT ) is at most k. Thus we have
that r ≤ k.

If A ∈ Rm×n has row rank r then there exists R ∈ Rr×n with linearly independent rows such
that

A = WR

where the rows of W ∈ Rm×r are the coordinates of the rows of A with respect to the (basis) rows
of R. Thinking of the columns or R as coefficients of linear combinations of the columns of W
and realizing that W has r columns, we have that the dimension of R(A) is at most r. Thus we
have that k ≤ r.

Combining the two inequalities, r ≤ k and k ≤ r gives that k = r, ie. the column and row
ranks are equal.

Range and Nullspace

Range Space
A matrix A ∈ Rm×n represents a linear map from Rn which is called the domain to Rm which
is called the co-domain. The span of the columns of A is a subspace of the co-domain called the
range of A sometimes denoted R(A). Note this is equivalent to the definition.

R(A) = {y ∈ Rm | y = Ax, for some x ∈ Rn} (35)

Column  
perspective

A =

2

4
| |
A1 A2

| |

3

5

R3
A1

A2

R(A)

y

A1x1

A2x2
y = Ax

A 2 R3⇥2

2

4
y1
y2
y3

3

5 =

2

4
| |
A1 A2

| |

3

5

x1

x2

�

28



Row Perspective

A =

2

4
� Ā1 �
� Ā2 �
� Ā3 �

3

5A 2 R3⇥2
2

4
y1
y2
y3

3

5 =

2

4
� Ā1 �
� Ā2 �
� Ā3 �

3

5

x1

x2

�

y = Ax

A
Ā2Ā1

x1

x2

x

x0

A1

A2

R(A)

R3 R2

Row Perspective

A =

2

4
� Ā1 �
� Ā2 �
� Ā3 �

3

5A 2 R3⇥2
2

4
y1
y2
y3

3

5 =

2

4
� Ā1 �
� Ā2 �
� Ā3 �

3

5

x1

x2

�

y = Ax

R3

A1

A2

R(A)

y1

y2

y3

A
Ā2Ā1

x1

x2

Ā3

x

x0

R2

Null Space
The nullspace of A, sometimes denoted N (A), is the subspace of the domain such that

N (A) = {x ∈ Rn | Ax = 0} (36)

• Orthogonal to the rows of A
N (A) ⊥ R(AT )

R(AT ) is the span of the rows of A. Decompose A ∈ Rm×n into rows as

A =

− āT1 −
...

− āT1 −


If Ax = 0, then

Ax =

− āT1 −
...

− āTm −

x =

ā
T
1 x
...

āTmx

 =

0...
0


ie. if x ∈ N (A) then x is orthogonal to each row of A. N (A) ⊥ R(AT ) and similarly
N (AT ) ⊥ R(A).

29



Nullspace:  Row perspective

R3

Ā1

N1

N2
N (A)

R3

N1

N (A)

Ā1

Ā2

A =


� Ā1 �
� Ā2 �

�2
4

|
N1

|

3

5AN = =


0
0

�
A 2 R2⇥3

AN =
⇥
� Ā1 �

⇤2
4

| |
N1 N2

| |

3

5

2

4
| |
N1 N2

| |

3

5 =


0
0

�
A 2 R1⇥3

• Basis Construction:
Suppose A has column rank k, ie. R(A) has dimension k. Assume (without loss of gener-
ality) that the first k columns of A are linearly independent (and thus span the range). (A
similar construction can be done with any k linearly independent columns of A.) Let

A =

 | |
A1 · · · An

| |

 , and B =

 | |
A1 · · · Ak

| |


where B ∈ Rn×k is (the first) k linearly independent columns of A. A can then be written as

A =
[
B BD

]
where the columns of D ∈ Rn×(n−k) are the coordinates of the remaining n− k columns of
A with respect to the columns of B. | |

Ak+1 · · · An

| |

 = BD =

 | |
A1 · · · Ak

| |


︸ ︷︷ ︸

B

 | |
Dk+1 · · · Dn

| |


︸ ︷︷ ︸

D

Let N ∈ Rn×(n−k) be given by

N =

[
−D
I

]

30



Note that

AN =
[
B BD

] [−D
I

]
= 0

We have also that the columns of N form a basis for the nullspace of A

B3 =


B13

B23

�
B4 =


B14

B24

�

A4 =

2

4
| |
A1 A2

| |

3

5

B14

B24

�

A3 =

2

4
| |
A1 A2

| |

3

5

B13

B23

�A1

R2

A2

A3

A4

AN =

2

4
| | | |
A1 A2 A3 A4

| | | |

3

5

2

66664

| |
B3 B4

| |
�1 0
0 �1

3

77775AN =

2

4
| | | |
A1 A2 A3 A4

| | | |

3

5

2

66664

| |
B3 B4

| |
�1 0
0 �1

3

77775

=


0 0
0 0

�
Nullspace:
• Columns 

perspective 
• basis 

construction

)

NN (A) = R(N)

A 2 R2⇥4

Proof:

– Span N (A):
Suppose Ax = 0

Ax =
[
B BD

] [x1

x2

]
= 0

Bx1 = −BDx2(
(BTB)−1BT

)
Bx1 = −

(
(BTB)−1BT

)
BDx2

x1 = −Dx2

Note that the linear independence of the columns of B guarantees that BTB is invert-
ible. Plugging in then gives

x =

[
x1

x2

]
=

[
−Dx2

x2

]
=

[
−D
I

]
x2 = Nx2

showing that x is a linear combination of the columns of N .

31



– Linear independence:
Suppose Nx2 = 0

Nx2 =

[
−D
I

]
x2 =

[
−Dx2

x2

]
=

[
0
0

]
It follows that x2 = 0.

Rank-Nullity Theorem

The explicit construction of a basis for the nullspace given above shows that if a matrix has (col-
umn) rank k then the nullspace has dimension n− k. The dimension of the nullspace is known as
the nullity and we have the rank-nullity theorem

dim(R(A)) + dim(N (A)) = n

rk(A) + dim(N (A)) = n

6 Fundamental Theorem of Linear Algebra
R(AT ) and N (A) are orthogonal subspaces of the domain, meaning that any vector in one is
orthogonal to any vector in the other. In addition, together N (A) and R(AT ) span all of the
domain Rn. Similarly, R(A) and N (AT ) are orthogonal subspaces of the co-domain and together
they span the co-domain.

Fundamental Theorem of Linear Algebra Diagram

CODOMAIN 1137rem DOMAIN Noren

y AX dim _k
dim _k R At

RCA orRlAMxn
dim k AER

A c min

VIA'T rk A k NCA
or N AM

dim m k din n k

CODOM BCA NIA'T DOM At A

RCA Rf RIA'T1132
A EE EI

o

NCA'T O pk A 3 NCA 0

Rfa Eplan Rfa'T_YpwanC2 H

wfatssjoww.CH A_EE H NCA Eplan

rkCA 4

32



CODOMAIN 1137rem DOMAIN Noren

y AX dim _k
dim _k R At

RCA orRlAMxn
dim k AER

A c min

VIA'T rk A k NCA
or N AM

dim m k din n k

CODOM BCA NIA'T DOM At A

RCA Rf RIA'T1132
A EE EI

o

NCA'T O pk A 3 NCA 0

Rfa Eplan Rfa'T_YpwanC2 H

wfatssjoww.CH A_EE H NCA Eplan

rkCA 4

2× 2 examples of rank 2 and 1.

RCA lB NIH Eplin
A EE I El

NAT O rk A L

RA'T srfanfi

ie.INA'T
EpwanC113A

EEI
NA anfII

rkCA 4 Rfa'T Epwancz 21

RCA Epdanfil

raise'm
A f I NHtEffenfil

rk A L
RCA'T sopwan 1 1

NIA'T Fpwan i'of

Col 0

RIA spanf A
fi MAHR
O l

nkCA z
N A 0

NAT_Fpwan1 11

33



RCA lB NIH Eplin
A EE I El

NAT O rk A L

RA'T srfanfi

ie.INA'T
EpwanC113A

EEI
NA anfII

rkCA 4 Rfa'T Epwancz 21

RCA Epdanfil

raise'm
A f I NHtEffenfil

rk A L
RCA'T sopwan 1 1

NIA'T Fpwan i'of

Col 0

RIA spanf A
fi MAHR
O l

nkCA z
N A 0

NAT_Fpwan1 11

2× 3 examples of rank 2 and 1. 3× 2 examples of rank 2 and 1.

34



RCA R A
fifty RAJAB

NCA'J O

rk A 3
MAKO

NA'T EpwanCIII

A 1EE
NAI spading

rk A 3

RCA Ep'anffI RCA'T srpowanEEE.to

NIAT FpwnEEIE
A ii If NA Ep'm If

RCA poah
4444

rklA l
RCA'T_Fpwan I 12

3× 3 examples of rank 3,2, and 1.

35



Systems of Equations
Matrices are used to represent and solve systems of linear equations. Suppose we A ∈ Rm×n and
y ∈ Rm and x ∈ Rn that satisfy.

y = Ax (37)

Note that this equation is slightly more complicated than it first appears. Depending on the shape
of A it may have a unique solution, no solution, or a whole subspace of solutions.

Unique Solution
The simplest case is that A is square, ie. x, y ∈ Rn and the columns are linearly independent. This
means there is a unique linear commbination of the columns that reaches every individual point y in
the co-domain. We can compute this exact linear combination by doing Gaussian elimination also
known as row reduction. Each step of Gaussian elimination, each elementary row operation can be
represented by left-multiplication of Equation (37) by a specific type of matrix called elementary
matrices. These elementary matrices come in three types: row-multiplying, row-swapping, and
row-adding demonstrated below

1
. . .

1
α

1
. . .

1


︸ ︷︷ ︸

multiplying a row by α

,



1
. . .

1
. . .

α 1
. . .

1


︸ ︷︷ ︸

adding a row times α

,



1
. . .

0 1
. . .

1 0
. . .

1


︸ ︷︷ ︸

swapping rows

(38)

When we perform Gaussian elimination on Equation (37) to transform A into the identity, we
left-multiply by the appropriate set of elementary matrices {E1, . . . , Ek}

(Ek · · ·E1)︸ ︷︷ ︸
A−1

l

y = (Ek · · ·E1)A︸ ︷︷ ︸
I

x (39)

These elementary matrices multiplied together are called the left-inverse A−1
l = (Ek · · ·E1), ie. the

matrix that transforms A into the identity by left-multiplying. Note that we could have performed
a similar procedure to solve the equation y⊤ = x⊤A except we would multiply on the right by
elementary column matrices. This procedure would construct the right inverse of A, denoted A−1

r .
y⊤A−1

r = x⊤AA−1
r = x⊤. Assuming A is square and invertible, these two left and right inverses

36



are the same and we simply denote them as A−1 = A−1
l = A−1

r . This can be seen from

A−1
l · A = I

A−1
l · A · A−1

r = I · A−1
r

A−1
l = A−1

r

(40)

No solution (Least Squares)
If m > n, ie. A is "tall", then it is unlikely that there is any solution at all. The columns of A
span a subspace of the co-domain called the range of A. There will only be a solution for x if
y happens to lie in this subspace. If the columns of A are linearly independent, then A will still
have a left-inverse. This is based on the fact that the linear independence of the columns of implies
that the matrix A⊤A will be invertible. This in turn implies that we can construct a left-inverse
as A−1

l = (A⊤A)−1A⊤. Supposing that y is actually in the range of A, ie. there does exist an x
solving (37), we can find this x using this left-inverse.

Assume y in range of A... y = Ax

(A⊤A)−1A⊤y = (A⊤A)−1A⊤ · Ax = x (41)

Now suppose y is not in the range of A. We can still try to find an x that makes Ax as close to y as
possible, ie. we can try to minimize

||y − Ax||22 = (y − Ax)⊤(y − Ax) = y⊤y + y⊤Ax+ x⊤A⊤Ax =
∑
i

(yi − Ai:x)
2 (42)

x that minimizes this quantity is called the least squares solution, xlsq = A(A⊤A)−1A⊤y which is
the projection of y onto the range of A. We can derive the least squares solution by computing the
derivative of (42) and set it equal to 0.

∂

∂x

(
y⊤y − y⊤Ax− x⊤Ay + x⊤A⊤Ax

)
= −2y⊤A+ 2x⊤A⊤A = 0 (43)

⇒ x = (A⊤A)−1A⊤y (44)

 

o I
ycytyiytjxxolyxfI mtyitlxt fi.iq

By y ytyj'ytxTp
yo y yty5yX ay

D D

yTx lx ly cosQ y zspanofD colsoff

Nox sit I

g Ax yoo CHAI EmfsB q

y Axl Nakspoafea ap
7 is is liedb ez

Range o BAA Yx
q
ACAtA5Ax e

ftp.opffff
minimizes ly Axl

AIN
1 121 O

go IN cotsfi
i o Dre

Fatale IO

37



Subspace/Continuum of Solutions
Suppose n > m, ie. A is "fat", and there are more than m linearly independent columns. In . this
case, we have more columns than we need to span the space. If we pick any m linear independent
columns, we can compute a solution. Suppose the first m columns of A are linearly independent,
A = [Ā · · · ] where Ā ∈ Rm×m. We can then compute one solution as x1 = [Ā−1y 0]⊤ where 0 is
the appropriate size vector of zeros. The same procedure with different sets of columns produces
up to n − m + 1 linearly independent solutions which we can organize as the columns of X =
[x1 · · · xn−m+1]. Note that A(xi − xj) = 0, ie. xi − xj is in the nullspace of A. A basis for the
nullspace of A can be computed as the columns of XW where the matrix W ∈ R(n−m+1)×(n−m) is
given by W = [1− I]⊤ where 1 is a vector of ones of the appropriate size. (Note that W computes
differences between the columns of X . A different W that computes column differences could be
used.) Any solution of (37) has the form

x = x0 + xNS = x0 +XWz

for some z ∈ Rn−m, ie. any solution consists of some specific solution x0 plus some component
in the nullspace of A. We can compute a specific solution using the method above (selecting m
linearly independent columns). However, assuming the rows of A are linearly independent and if
we want a specific solution x0 that is orthogonal to the nullspace of A, then we can select x as a
linear combination of the rows of A. Assume x0 has the form x0 = A⊤w with w ∈ Rm. Plugging
into (37), gives

y = AA⊤w ⇒ w = (AA⊤)−1y ⇒ x0 = A⊤(AA⊤)−1y (45)

Note that x0 is y times a right-inverse of A. Note also that x0 is orthogonal to the nullspace of
A since x⊤

NSA
⊤(AA⊤)−1 = 0. Note also that x0 computed in this way is the solution with the

minimum 2-norm. To see this, note that adding some component from the nullspace only increases
the square of the 2-norm.

|x0 + xNS|2 = (x0 + xNS)
⊤(x0 + xNS) (46)

= (x0)⊤x0 + 2x⊤
NSx

0 + x⊤
NSxNS (47)

= (x0)⊤x0 + x⊤
NSxNS = |x0|2 + |xNS|2 ≥= |x0|2 (48)

General Case

Minimum-Norm, Least Squares (Moore-Penrose Pseudoinverse)
In the general case, A ∈ Rm×n may not be full column or row rank. In this case neither A⊤A or
AA⊤ or In this case, for there are many possible x’s that are all equally bad at reaching y. Perhaps
the most sensible x to choose in this case is the minimum-norm, least squares solution. Here, we
look for the least squares solution that does not include any element in the nullspace of A. This can
be computed using the Moore-Penrose pseudoinverse denoted A†. This is best understood using

38



the singular-value decomposition. (Here we assume the matrix A is real and so we use the real
SVD; an exactly analogous formula works in the complex case). Given that the SVD of A, A† can
be written as follows

A =

[
U1 U2

]
︸ ︷︷ ︸

U

[
Σ 0
0 0

] [
−V ⊤

1 −
−V ⊤

2 −

]
︸ ︷︷ ︸

V ⊤

=⇒ A† =

[
V1 V2

]
︸ ︷︷ ︸

V

[
Σ−1 0
0 0

] [
−U⊤

1 −
−U⊤

2 −

]
︸ ︷︷ ︸

U⊤

(49)

Note that in this formula, we’ve followed the standard rules for taking an inverse—reversing the
order and inverting V and U (since U−1 = U⊤ and V −1 = V ⊤) — but we only inverted the
part of the center matrix that is invertible. As detailed in the SVD lecture, U1, U2, V1, V2 have the
following interpretations.

U1 : orthonormal basis for the range of A

U2 : orthonormal basis for the nullspace of A⊤

V1 : orthonormal basis for the range of A⊤

V2 : orthonormal basis for the nullspace of A

Intuitively, A contains an invertible map between the range of A and the range of A⊤ and we’ve
inverted this part of A while ignoring the part in the nullspace. Expanding out, we get that (49)
could be written as

A = U1ΣV
⊤
1 =⇒ A† = V1Σ

−1U⊤
1 (50)

Note that here this looks like a simple formula except U1 and V1 are tall so they can’t simply be
inverted.

Exercise:. Show that for an equation y = Ax (for general A), x = A†y gives the least squares
solution with the minimum norm.

Gaussian Elimination: Row Reduction
We now consider what happens if we perform Gaussian elimination on a general matrix with rank
k where k < m, k < n. For a matrix A ∈ Rm×n with rank k, assuming the first k columns of A
are linearly independent we can find an invertible E ∈ Rm×m that is a composition of elementary
matrices E = Eℓ · · ·E1 such that

EA =

[
I B
0 0

]
(51)

with I ∈ Rk×k and B ∈ Rk×n−k. It will be helpful to decompose E and also E−1 as

E =

[
− E ′ −
− E ′′ −

]
, E−1 =

 | |
F ′ F ′′

| |


39



where

E ′ ∈ Rk×m, E ′′ ∈ R(m−k)×m, F ′ ∈ Rm×k, F ′′ ∈ Rm×(m−k)

Note: since A has rank k, there will always be at least k linearly independent columns, if the
first k columns aren’t linearly independent then the above formula must be changed to be

EAP =

[
I B
0 0

]
(52)

where P is some permutation matrix that reorders the columns so that the first k are linearly
independent. This is the most general form Gaussian elimination can take. In this case, we solve
the linear system y = APx′ where x = Px′ ⇐⇒ x′ = P⊤x. Once we’ve solved for x′, we can
recover x. For simplicity, we will consider equation (51).

Note that since the columns (or rows) of E ′, E ′′, F ′, F ′′ are all columns (or rows) of invertible
matrices, they must be linearly independent. We note also that

I = EE−1 =

[
− E ′ −
− E ′′ −

] | |
F ′ F ′′

| |

 =

[
E ′F ′ E ′F ′′

E ′′F ′ E ′′F ′′

]
=

[
I 0
0 I

]

Specifically, note which submatrices must be orthogonal. We also have that I = E−1E = F ′E ′ +
F ′′E ′′.

Using the above decomposition the row-reduction operations become

EA =

[
− E ′ −
− E ′′ −

] | |
A′ A′′

| |

 =

[
E ′A′ E ′A′′

E ′′A′ E ′′A′′

]
=

[
I B
0 0

]

It can also be quite useful to write the above equation as a decomposition of A

A = E−1

[
I B
0 0

]
=

 | |
F ′ F ′′

| |

[I B
0 0

]
= F ′ [I B

]
It is clear from this that F ′ must span the range of A. Since the columns are linearly independent it
is also a basis. We also have that the rows of E ′′ form a basis for the nullspace of AT by a similar
linear independence argument, rank-nullity (applied to the co-domain) and the fact that E ′′F ′ = 0.
Note that the rows of

[
I B

]
are also linearly independent (since the first subblock is the identity)

and thus
[
I B

]T is a basis for the range of AT Finally, by arguments given in the discussion on
nullspaces, the rows of

[
BT −I

]T are a basis for the nullspace of A. We can summarize these
insights in a list of bases for the four fundamental subspaces related to A.

Range
of A : F ′, Nullspace

of AT : E ′′T Range
of AT :

[
I
BT

]
, Nullspace

of A :

[
B
−I

]
40



Gaussian Elimination: Column Reduction
We can make a similar argument to the above for column reduction in the general case. For a
matrix A ∈ Rm×n with rank k assuming the first k rows of A are linearly independent, we can find
an invertible E ∈ Rm×m that is a composition of elementary matrices E = E1 · · ·Eℓ such that

AE =

[
I 0
C 0

]
with I ∈ Rk×k and C ∈ Rk×m−k. (If the first k rows are not linearly independent, replace AE with
PAE for a permutation matrix P that shuffles k linearly independent rows into the first k spots.)
Note here this composition of elementary matrices E will be different than in the row reduction
case. Again it will be helpful to decompose E and also E−1 as

E =

 | |
E ′ E ′′

| |

 , E−1

[
− F ′ −
− F ′′ −

]

where E ′ ∈ Rn×k, E ′′ ∈ ⋉×⋉− ℸ, F ′ ∈ Rk×n, and F ′′ ∈ ⋉− ℸ×⋉. Note that since the
columns (or rows) of E ′, E ′′, F ′, F ′′ are all columns (or rows) of invertible matrices, they must be
linearly independent. We note also that

I = E−1E =

[
− F ′ −
− F ′′ −

] | |
E ′ E ′′

| |

 =

[
F ′E ′ F ′E ′′

F ′′E ′ F ′′E ′′

]
=

[
I 0
0 I

]

Specifically, note which submatrices must be orthogonal. We also have that I = EE−1 = E ′F ′ +
E ′′F ′′.

Using the above decomposition the column-reduction operations become

AE =

[
− A′ −
− A′′ −

] | |
E ′ E ′′

| |

 =

[
A′E ′ A′E ′′

A′′E ′ A′′E ′′

]
=

[
I 0
C 0

]
It can also be quite useful to write the above equation as decomposition of A

A =

[
I 0
C 0

]
E−1 =

[
I 0
C 0

] [
− F ′ −
− F ′′ −

]
=

[
I
C

]
F ′

It is clear from this that the rows of F ′ must span the range of AT . Since the rows are linearly
independent it is also a basis. We also have that the columns of E ′′ form a basis for the nullspace
of A by a similar linear independence argument, rank-nullity (applied to the co-domain) and the

fact that F ′E ′′ = 0. Note that the columns of
[
I
C

]
are also linearly independent (since the first

subblock is the identity) and thus
[
I
C

]T
is a basis for the range of A Finally, by arguments given

41



in the discussion on nullspaces, the rows of
[
C −I

]
are a basis for the nullspace of AT . We can

summarize these insights in a list of bases for the four fundamental subspaces related to A.

Range
of A :

[
I
C

]
, Nullspace

of AT :

[
CT

−I

]
Range
of AT : F ′T , Nullspace

of A : E ′′

Inverse Properties

Properties of inverses:
P,Q ∈ Cn×n invertible, and k ∈ C.

• (P−1)−1 = P

• (kP )−1 = 1
k
P−1

• (PQ)−1 = Q−1P−1

• det(P−1) = 1
det(P )

• P−1 = 1
det(P )

Adj(P )

Equivalent Inverse Properties:
• P is invertible, ie. P−1 exists.

• P⊤ is invertible

• P can be row reduced to the identity (via Gaussian Elimination (GE))

• P can be column reduced to the identity (via GE).

• P is a product of elementary matrices.

• P (square) is full row rank.

• P (square) is full column rank.

• Columns of P (square) are linearly independent, ie. Px = 0 ⇒ x = 0.

• Rows of P (square) are linearly independent, ie. y⊤P = 0 ⇒ y⊤ = 0. Rows of P (square)
are linearly independent.

• y = Px has a unique solution for each y.

• P has a trivial nullspace. N (P ) = {0}

42



• 0 is not an eigenvalue of P .

• det(P ) ≠ 0.

• There exists Q such that PQ = QP = I (P−1 = Q).

• P has a left and a right inverse.

Inverse Formulas
• 2× 2 inverse

P =

[
a b
c d

]
, P−1 =

1

det(P )
Adj(P ) =

1

ad− bc

[
d −b
−c a

]
=

1

det(P )

[
Tr(P )I − P

]
• 3× 3 inverse

P−1 =
1

det(P )
Adj(P )

=
1

det(P )

[
1
2

(
Tr(P )2 − Tr(P 2)

)
I − PTr(P ) + P 2

]
• Block Matrix Inversion

P−1 =

[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
=

[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
assumingD−1 and (A−

BD−1C)−1 exist or A−1 and (D − CA−1B)−1 exist.

Proof: [
A B
C D

]−1

=

([
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

])−1

=

[
I 0

−D−1C I

] [
(A−BD−1C)−1 0

0 D−1

] [
I −BD−1

0 I

]
[
A B
C D

]−1

=

([
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

])−1

=

[
I −A−1B
0 I

] [
A−1 0
0 (D − CA−1B)−1

] [
I 0

−CA−1 I

]
43



• Woodbury Matrix Identity
Note: this formula is a work horse of matrix algebra and worth memorizing.

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

where A ∈ Cn×n, U ∈ Cn×k, C ∈ Ck×k, and V ∈ Ck×n. This formula is particularly useful
when n > k (U is tall and V is fat). In particular, if U is a column vector, V is a row vector,
and C is a scalar, then this equation is called the Sherman-Morrison Formula.

Special Cases:

– Inverse of A+B:

(A+B)−1 = A−1 − A−1B(I + A−1B)−1A−1

Note: other forms are possible as well.

– Sherman-Morrison:

(A+ uv⊤)−1 = A−1 − A−1u
1

1 + v⊤A−1u
v⊤A−1

• Neumann Series

A−1 =
∞∑
n=0

(I − A)n, if lim
n→∞

(I − A)n = 0

• Derivative of Inverse
For P (t)

∂P−1

∂t
= −P−1∂P

∂t
P−1

Basis

A set of vectors {Vi}ni=1 are a basis for a vector space V if 1.) {Vi}ni=1 span V and 2) {Vi}ni=1

are linearly independent. Every basis for V has the same number of vectors and the number
of vectors in a basis for V is called the dimension of V .

Change of Basis

Suppose we have a basis for Rn stored in the columns of a square matrix P ∈ Rn×n and
a vector x ∈ Rn. The coordinates of x with respect to the basis P are the coefficients

44



of the linear combination of the columns of P that gives the vector x. We represent these
coordinates in a vector z ∈ Rn and have that x = Pz. Note that x is really the coordinates of
itself with respect to the standard basis vectors which are the columns of the identity matrix,
ie. x = Ix.

To compute the coordinates of x with respect to P , we simply invert P , ie. z = P−1x. If the
columns of P are a basis, then they must be linearly independent and P is invertible.

For simple 2 × 2 and 3 × 3 cases, we could also compute the coordinates z by drawing the
basis vectors and x and eyeballing the appropriate coordinates as in the figure above. This
is a useful exercise in order to develop intuition coordinates. We give several examples in
the figures below. (Once you guess z, you can always easily check how close you are by
computing Pz and comparing it with x.)

2

4
| |
P1 P2

| |

3

5

2

4
| |
P1 P2

| |

3

5x =

z1
z2

�2

4
| |
P1 P2

| |

3

5

2

4
| |
P1 P2

| |

3

5x =

z1
z2

�

P1

P2
z1 = 1

2

z2 = 1
2

z2 = 2

z1 = 2
P1

P2

x

P1 P2

z1 = �2

xx

2

4
| |
P1 P2

| |

3

5

2

4
| |
P1 P2

| |

3

5x =

z1
z2

�

Similarity Tranforms

Now suppose, we have a square matrix A ∈ Rn×n that transforms the vector x ∈ Rn into a
vector y ∈ Rn, ie. y = Ax. We represent both x and y in terms of a new basis given by the
columns of P ∈ Rn×n, ie. x = Px′ and y = Py′. We want to find a matrix A′ that represents
the action of A when x and y are expressed in the x′ and y′ coordinates respectively, ie. we
want to find A′ ∈ Rn×n such that y′ = A′x′. We can do this by plugging in the relationships
between x and z

y = Ax (53)
Py′ = APx′ (54)
y′ = P−1AP︸ ︷︷ ︸

A′

x′ (55)

We say that A′ is related to A by a similarity transform, ie. A′ represents the transformation
of A just with respect to a different coordinate system. The construction of A′ is illustrated
in the figure below.

45



y = Ax

PP -1PP -1

y0 = A0x0

A0

A

RnRn

Rn Rn

y = Ax

PP -1

y0 = A0x0

A0

A

Rn

Rn

Rm

Rm

A0 = PAP -1 A0 = PA

Q-1 Q

x

x0
y0

y x

x0y0

y

Q-1

Similarity Transform: A 2 Rn⇥n Coordinate Transform: A 2 Rm⇥n

A generalization of this concept is that x ∈ Rn and y ∈ Rm are transformed under different
coordinate transformations, ie. x = Px′ and y = Qy′. A is then transformed as

y = Ax (56)
Qy′ = APx′ (57)
y′ = Q−1AP︸ ︷︷ ︸

A′

x′ (58)

Note that here, it is not necessary that A be square and x and y have the same dimension.
This situation is illustrated in the figure below.

46



y = Ax

PP -1PP -1

y0 = A0x0

A0

A

RnRn

Rn Rn

y = Ax

PP -1

y0 = A0x0

A0

A

Rn

Rn

Rm

Rm

A0 = PAP -1 A0 = PA

Q-1 Q

x

x0
y0

y x

x0y0

y

Q-1

Similarity Transform: A 2 Rn⇥n Coordinate Transform: A 2 Rm⇥n

Traces and Determinants

Two useful numbers associated with square matrices are the trace and the determinant. The
trace is the sum of the diagonals

Tr(A) =
∑
i

Aii (59)

Traces are very well behaved algebraic. One can check immediately the following identities.

Tr(A) = Tr(AT ), Tr(A+B) = Tr(A) + Tr(B), Tr(AB) = Tr(BA) (60)

Formulas for the determinant are generally complicated but they compute how the volume
of the unit cube changes under the transformation A.

det(A) = signed volume of the unit cube transformed by A (61)

47



The sign of the determinant flips if the unit cube is reflected across some axis.

Determinants have the properties

det(A) = det(AT ), det(A−1) = det(A)−1, det(AB) = det(BA) = det(A)det(B)
(62)

Both the trace and determinant have special relationships with the eigenvalues of A (see
below for discussion of eigenvalues). If the eigenvalues of A, λ1, . . . , λn then we have that

Tr(A) =
∑
i

λi, det(A) =
∏
i

λi (63)

Eigenvectors, Eigenvalues, and Diagonalization

In general, multiplying a column vector x ∈ Rn by a square matrix A ∈ Rn×n causes
that vector to stretch and to rotate. However, some vectors in specific subspaces are only
stretched, not rotated. Another way to say this is that those subspaces are invariant with re-
spect to A. These invariant subspaces are called right eigenspaces and vectors within them
are called right eigenvectors. The amount each eigenvector is stretched is called it’s eigen-
value. We can also consider a similar situation where left multiplying A by specific row
vectors only causes them to stretch. These row vectors are called left eigenvectors and they
live in left eigenspaces. (The eigenvalues for left and right eigenvectors turn out to be the
same, ie. left and right eigenspaces come in pairs.) Finding a linearly independent sets of
eigenvectors (either left or right) for a square matrix A is one of the fundamental problems of
linear algebra. If we represent vectors as coordinates with respect to a basis of eigenvec-
tors, then the action of the matrix simply becomes scaling each individual coordinate
by the appropriate eigenvalue. If a matrix has a linearly independent basis of eigenvectors
then we say it is diagonalizable. Not all matrices are diagonalizable, but if we choose a
matrix at random then it will be (with probability 1), ie. we have to specifically work to
construct a matrix that is not diagonalizable. The reason for this is that non-diagonalizable
matrices are a low dimensional subset of the space of all matrices. Many arguments in lin-
ear algebra are best understood by understanding them for diagonalizable matrices and then
generalizing them to the non-diagonalizable case.

The right and left eigenvector equations are given by

λv = Av, λwT = wTA (64)

respectively. Suppose the columns of P ∈ Rn×n are a linearly independent set of right
eigenvectors of A and with eigenvalues λ1, . . . , λn. Let D ∈ Rn be a diagonal matrix with
the eigenvalues on the diagonal, ie. D = diag([λ1, . . . , λn]). The columns of P being right
eigenvectors is equivalent to the equation

AP = PD (65)
⇒ A = PDP−1 (66)

48



We say that the matrix of eigenvectors P diagonalizes A because it relates A to a diagonal
matrix D via a similarity transform. In other words if x = Pz, z′ = Px′ and x′ = Ax, then
z′ = Dz. Note that in the z-coordinates, D simply scales each coordinate by the appropriate
eigenvalue.

Left multiplying (66) by P−1 gives P−1A = DP−1. Note that this means that the rows of
P−1 are a set of linearly independent left-eigenvectors of A. Note that this also shows why
the left and right eigenvectors come in pairs and share eigenvalues. To summarize, let

P =

 | |
v1 · · · vn
| |

 , D =

λ1 0
... . . . ...
0 λn

 , P−1 =

− w∗
1 −

...
− w∗

n −

 , (67)

with vi and wj being right and left eigenvectors. A can be decomposed as

A =

 | |
v1 · · · vn
| |


λ1 0

... . . . ...
0 λn


− w∗

1 −
...

− w∗
n −

 =
∑
i

λiviw
∗
i (68)

Note that real eigenvalues denote how much each eigenvectors get stretched when they are
multiplied by the matrix.

Computing Eigenvalues and Eigenvectors

As stated above the determinant of a matrix is equal to the product of its eigenvalues. This
means that if a matrix has a zero eigenvalue than its determinant is zero. Any vector in the
nullspace of a matrix is an eigenvector with an eigenvalue of 0. Note that if λv = Av then
(λI − A)v = 0. In other words, if v is eigenvector of A with eigenvalue λ, then v is also an
eigenvector of λI − A with eigenvalue 0. We can find eigenvalues of A by finding values
of λ such that (λI − A) has a 0 eigenvalue. This leads us to characterize eigenvalues as
solutions to the equation

χA(s) = det
(
sI − A) = 0 (69)

χA(s) is called the characteristic polynomial of A.

χA(s) = det(sI − A) = sn + αn−1s
n−1 + · · ·+ α1s+ α0

Based on properties of determinants, χA(s) will always have order n and the first term will always
be sn.

Once we find roots of χA(s), λi, we find the corresponding right and left eigenvectors by
finding vectors in the right and left nullspace of λiI − A respectively.

49



Formulas
2×2 Matrices

A =

[
a b
c d

]
=

[
m+ h p− k
p+ k m− h

]
where m = 1

2
(a+ d), h = 1

2
(a− d), p = 1

2
(b+ c), and k = 1

2
(c− b)

• Eigenvalues:

λ1,2 =
Tr
(
A
)

2
±
√(

Tr(A)
2

)2
− det(A)

= m±
√
h2 − bc

= m±
√

h2 + p2 − k2

• Eigenvectors

Spectral Mapping Theorem

Polynomial Functions
As stated above computing eigenvectors and eigenvalues simplifies matrix computations. In par-
ticular, note that given a diagonalization of A = PDP−1, we can compute powers of A as

Ak = A× · · · × A︸ ︷︷ ︸
×k

= PDk P−1 × P︸ ︷︷ ︸
I

DkP−1 × · · · × PDP−1 = PDkP−1 (70)

This implies that if a function f : Cn×n → Cn×n is a polynomial (or more generally analytic
function) of A, then

f(A) = Pf(D)P−1 = P

f(λ1) 0
... . . . ...
0 f(λn)

P−1 (71)

In other words, we can compute polynomial functions of A simply by applying that function to the
eigenvalues of A and leaving the eigenvectors unchanged. This is known as the spectral mapping
theorem. Note that this analysis applies to polynomials with an infinite number of terms such as
Taylor expansions of functions such as e(·), cos(·), and sin(·) as well.

50



Matrix Exponential
One important function of A that we want to compute is the matrix exponential eA where which
can be defined by its Taylor expansion.

eA := I + A+ 1
2!
A2 + 1

3!
A3 + · · · =

∞∑
k=0

1
k!
Ak (72)

Note that by the spectral mapping theorem we have that

eA = PeDP−1 = P

e
λ1 0
... . . . ...
0 eλn

P−1 (73)

Exponential functions are interesting because they are functions who are equal to their own deriva-
tive (times some scaling), ie. d

dt
eλt = λeλt. (Note that eλt is actually an eigenfunction of the

derivative operator d
dt

with eigenvalue λ.)

Cayley-Hamilton Theorem
The Cayley-Hamilton theorem says that a matrix satisfies its own characteristic polynomial, ie.
A(A) = 0. For diagonalizable matrices, this is a direct application of the spectral mapping theorem.

χA(A) = PχA(D)P−1 = P

χA(λ1) · · · 0
...

...
0 · · · χA(λn)

P−1 = 0

Consequently,

An = −αn−1A
n−1 − · · · − α1A− α0I

As a result of this, any polynomial function of A could be expressed in terms of powers of A only
up through n−1. Higher powers of A can be reduced by iteratively plugging in the above equation.

Another application of Cayley-Hamilton gives a polynomial expression for a matrix inverse.

0 =
(
An + αn−1A

n−1 + · · ·+ α1A+ α0I
)
A−1

A−1 = − 1
α0
An−1 − αn−1

α0
An−2 − · · · − α1

α0
I

51



Jordan Form
To motivate a study of Jordan form, we consider the following matrix

Ji = λiI +Ni =


λi 1 · · · · · · 0

0 λi
...

... . . . ...

... λi 1
0 · · · · · · 0 λi


where Ni is a matrix with 1’s on the first super diagonal. This matrix Ni is an example of a nilpotent
matrix since raising it to some power gives a matrix of 0’s, ie. for example0 1 0

0 0 1
0 0 0

3

=

0 1 0
0 0 1
0 0 0

0 0 1
0 0 0
0 0 0

 =

0 0 0
0 0 0
0 0 0


Note that any matrix similar to a nilpotent matrix is also nilpotent. If Nk

i = 0, then (PNiP
−1)k =

PNk
i P

−1 = 0. If Ji = λiI + Ni, then clearly, Ji − λiI is nilpotent, ie. Ji − λiI = Ni. Since the
eigenvalues of a triangular matrix are just the diagonal values, we have that the only eigenvalue of
Ni is simply 0. However, Ni clearly has n− 1 linearly independent columns, ie. rank n− 1. Thus
it only has a one dimensional nullspace. One can check that the characteristic polynomial of Ni is
χNi

(s) = sn and the charactestic polynomial of Ji = λiI +Ni is χJi(s) = (s− λi)
n.

A matrix is not diagonalizable when a full basis of eigenvectors does not exist. For a matrix
A ∈ Rn×n with n distinct eigenvalues, there must be a basis of n linearly independent eigenvectors
since each eigenvalue λi is associated with the nullspace of λiI − A. We know these eigenvectors
are linearly independent since if not

vi =
∑
j ̸=i

αjvj

Avi = A

(∑
j ̸=i

αjvj

)
0 =

∑
j ̸=i

αjλjvj − λivi

0 =
∑
j ̸=i

αj(λj − λi)vj

An inductive argument shows that λi = λj for some i and j which is a contradiction.
In this case, the characteristic polynomial is

χA(s) = (s− λ1)(s− λ2) · · · (s− λn)

52



In the general case with repeated eigenvaleus, the characteristic polynomial is given by

χA(s) =
k∏

i=1

(s− λi)
ki

where k is the number of distinct eigenvalues and ki is the number of times each eigenvalue is
repeated. If dim

(
N (λiI − A)

)
= ki for all i, then the matrix is diagonalizable. In this case,

N (λiI − A) = N
(
(λiI − A)2

)
= N

(
(λiI − A)3

)
= . . .

and

dim
(
N (λiI − A)

)
= dim

(
N
(
(λiI − A)2

))
= dim

(
N
(
(λiI − A)3

))
= · · · = ki

This happens when N (λiI − A) ∩R(λiI − A) = 0 for all i.
It is also possible that dim

(
N (λiI − A)

)
< ki In this case

N (λiI − A) ⊂ N
(
(λiI − A)2

)
⊂ N

(
(λiI − A)3

)
⊂ . . .

and

dim
(
N (λiI − A)

)
< dim

(
N
(
(λiI − A)2

))
< dim

(
N
(
(λiI − A)3

))
< · · · < ki (74)

ie., N (λiI − A) ∩R(λiI − A) ̸= 0. A regular eigenvector satisfies

(λiI − A)vi = 0

If dim
(
N (λiI−A)

)
< dim

(
N (λiI−A)2

)
, then we should be able to find generalized eigenvectors

that satisfy

(λiI − A)w2
i ∈ N (λiI − A), (λiI − A)w3

i ∈ N (λiI − A)2, etc

w2
i ∈ Cn is a 2nd order eigenvector, w3

i ∈ Cn is a 3rd order eigenvector, etc.
Note that

(λiI − A)2w2
i = 0, (λiI − A)3w3

i = 0, etc

If we are careful in picking, vi, w2
i , w3

i , . . . we can choose them so that

0 = (λiI − A)vi, vi = (λiI − A)w2
i , w2

i = (λiI − A)w3
i , etc (75)

A general organization of these equations is given by

AP = PJ =
[
V1 · · · Vq

]︸ ︷︷ ︸
P

J1 · · · 0
...

...
0 · · · Jq


︸ ︷︷ ︸

J

53



where

Vi =

 | | |
v1 w2

1 w3
1 · · ·

| | |

 , Ji = λiI +Ni =


λi 1 · · · · · · 0

0 λi
...

... . . . ...

... λi 1
0 · · · · · · 0 λi



Ni =


0 1 · · · · · · 0

0 0
...

... . . . ...

... 0 1
0 · · · · · · 0 0


Ji is called a Jordan block and q is the number of Jordan blocks. Each Jordan block corresponds to
one true eigenvector and a chain of generalized eigenvectors as in (75). Note that if each distinct
eigenvalue has only one Jordan block (and only one true eigenvector), then q = k, the number of
distinct eigenvalues. It is possible that a distinct eigenvalue has more than one Jordan block. In
this case, q > k. Most matrices are diagonalizable, but every matrix can be put in Jordan form.
Note that

A− λ1I = PJP−1 − λ1PP−1

= P (J − λ1I)P
−1

= P

N1 · · · 0
...

...
0 · · · Jq


and that

(A− λ1I)
ℓ = P

N
ℓ
1 · · · 0

...
...

0 · · · J ℓ
q


Since N1 is nilpotent, as ℓ increases the nullspace of (A− λ1I)

ℓ grows as in (74).
We now perform several manipulations with a simple non-diagonalizable matrix to illustrate

54



some simple properties of Jordan form. Consider

A =

 | | |
v w2 w3

| | |

λ 1 0
0 λ 1
0 0 λ

 | | |
v w2 w3

| | |

−1

=

 | | |
v w2 w3

| | |

λ 1 0
0 λ 1
0 0 λ

− (q3)T −
− (q2)T −
− pT −


= λv(q3)T + (v + λw2)(q2)T + (w2 + λw3)pT

= λv(q3)T + λw2(q2)T + λw3pT + v(q2)T + w2pT

Note that

• The first order right eigenvector v matches up with the third order left generalized eigenvec-
tor (q3)T

• The second order right eigenvector w2 matches up with the second order left generalized
eigenvector (q2)T

• The third order right eigenvector w3 matches up with the first order left eigenvector pT

We note that we could also write A in other ways related to Jordan form (These are just a
sample of how the Jordan block and eigenvectors could be shuffled.)

A =

 | | |
w2 v w3

| | |

λ 0 1
1 λ 0
0 0 λ

− (q2)T −
− (q3)T −
− pT −


=

 | | |
w3 w2 v
| | |

λ 0 0
1 λ 0
0 1 λ

− pT −
− (q2)T −
− (q3)T −


= etc...

6.1 Ordinary Differential Equations (ODEs) and Vector Fields
We model time evolution of a system with ordinary differential equations (ODEs). Let x ∈ Rn be
the vector valued state of some system that changes with time. A differential equation is written

∂x(t)
∂t

= ẋ(t) = f(x(t)), x(0) = x0, (76)

where f : Rn → Rn is a vector valued function of x and x0 ∈ Rn is some initial state or initial
condition of the system. If the system has a control input u(t) ∈ Rm, some signal that we get to
choose over time to modify the system dynamics, we can write

ẋ(t) = f(x(t), u(t)), x(0) = x0, (77)

55



where f : Rn×Rm → Rn is now a vector-valued function of x and u. We often refer to differential
equations of this form as vector fields cause we think of f(x) as defining an evolution direction at
each different point x in the state space. We can represent this graphically as a "field" of arrows.
x(t) evolves forward in time along these arrows from the initial state x0 to form a state trajectory.

The best understood differential equations are linear differential equations that have the form

ẋ = Ax, x(0) = x0 (78)

Linear differential equations are nice in that we can compute one state transition matrix or state
evolution matrix that allows us x(t) for any initial condition. In the simple case of (??) this
transition matrix is given by eAt and we have that

x(t) = eAtx(0) (79)

If A is diagonalizable, ie. A = PDP−1 for eigenbasis P then by the spectral mapping theorem,
we have that eAt = PeDtP−1. If we represent x in the eigenvector coordinates, ie. x(t) = Pz(t)
or z(t) = P−1x(t) this equation becomes

z(t) = eDtz(0) →

z1(t)...
zn(t)

 =

e
λ1tz1(t)

...
eλntzn(t)

 (80)

ie. we can examine the evolution of each eigenvector separately. Suppose λ = a + bi. The
exponential eλt = e(a+bi)t = eatebti. Thus a controls the decay (or explosion) rate of the signal and
b (referred to as the frequency) determines the oscillation rate of the signal.

First, suppose all the eigenvalues of a real matrix A are real. The possible vector fields and
state trajectories (for A ∈ R2×2 are illustrated below.

7 Rotational Motion

7.1 Rotation Matrices
A rotation matrix is a real valued matrix whose determinant is 1, and whose columns are orthonor-
mal, ie. whose columns are orthogonal and have length 1. Note that these conditions can be
succinctly written as

det(R) = 1, RTR = I (81)

This second condition is that the left-inverse of R is its transpose, ie. RT = R−1. Note that
this also means that RR−1 = RRT = I , ie. that the rows of R are orthonormal as well. The
generalization of rotation matrices to complex matrices are called unitary matrices, ie. U ∈ Cn×n

56



that satisfy det(U) = 1 and U∗U = I . The columns of a rotation matrix often used to represent
an orthonormal coordinate system for Rn. An orthonormal coordinate transformation is a type of
isometry, a coordinate transformation that does not change metric of the space. One can see this
by considering the coordinate transform x = Rz. All metric properties (distances and angles) are
computed using inner products. Note that zT z = xTRTRx = xTx. As a result inner products in
the x or z coordinates are the same so no metric properties change by transforming between these
coordinate systems. This is consistent with our intuition about rotation matrices.

Relaxing the determinant restriction to det(R) = ±1 allows the set of matrices to include
rotations and reflections. This allows for left-handed as well as right-handed coordinate systems.
A matrix R such that RTR = I, detR = −1 represents a left-handed coordinate system instead
of a right-handed one. In order to transform from the standard basis coordinates to a left-handed
coordinate system at least one reflection is required. Volumes transformed by orthogonal matrices
such that detR = −1 are flipped inside out.

3 UCRred 3
R Rikard

B farmEl p
R

if z if z
R R R
I 1

RTR I detCR 1 UTU_I delta t
righthanded lefthanded

SID zig fullrank
19 I

A AAI EV VEv Vz
AzuEvz If

AruEv

T l

A U i E i V i I
i r

afu.ua v
fo k gE

U ur

Uiu.ua E fE3Vt fuvil

SUD 3D rankdeficient
3

A UEL zu b
Ek k

AsUEb A uEv
z

v
Ev 1

A U E VT I
Us oso s

i v
n f r vo r zA AAAs r riu o e

Ufuiy.us 8 181 VIENNA

7.2 Skew-Symmetric Matrices
A matrix K ∈ Rn×n is skew-symmetric if K = −KT . Skew-symmetric matrices have purely
imaginary eigenvalues. Best thought of in the context of the equation ẋ = Kx. Note that you
can prove explicitly that if K = −KT then xTKx = 0, ie. Kx is perpendicular to x. Vector field
rotational, ie. eKt is a rotation matrix. Eigenvalues come in complex conjugate pairs, so if you have
an odd dimensional matrix then there is always one such that λ = 0. It follows that eλt = e0t = 1
and the eigenvector associated with the 0 eigenvalue is the axis of rotation.

57



 

SymmetricMatrices ConservativeVectorField

5 x XTs S PDP
744k 11

x Sx

onoo
vz v I a a

al s o
a r

re o
r o.oso o 0

skewSymmetricMatrices RotationalVector
Fields

3D w
zD or Kd

R x Kxtok u w th

r n v r
eeth d
r r

a tix Ellit final II Iekttuuyesos.cisEsiotidluiItekt q.u.wyqsogtisisiI HE

Integratingbots toSoCs
skamEffdmes Rotations

3 3 sW Kiesow W preatesots W

a r a
v z z z

vi e
as a as a

I 1 I gift
k fuihwllE.to fIIIK io ffgfgg R eit fRiRzBl

7.3 Matrix Lie Groups
Matrices can be thought of both as vectors or as operators. Sets of matrices are sometimes en-
dowed with a local coordinate structure. These sets of matrices can be thought of as a manifold
allowing one to talk about surface or space like properties of this set of matrices along with curva-
ture and other geometric notions. Matrices as operators often represent transformations that encode
symmetries, such as permutations, reflections, rotations, etc. In this context we can often talk about
sets of matrices as mathematical groups. Group theory is interested in composing operations or
transformations and seeing whether or not the composite operation has the same properties as the
original two. In some case in the contexts of matrices, a set of matrices is both a manifold and a
group. Perhaps the best example of these sets of matrices is the set of rotation matrices. Rotation
matrices have a continuous manifold structure but also a clear set of symmetries that are preserved
when two rotations are multiplied together. These matrix groups with a manifold structure are
called Lie groups. Some well known examples are

• GL(n): General linear group of dimension n, n × n matrices with det(A) = 1 for A ∈
GL(n).

⇒) Lie algebra: GL(n).

• SO(n): Special orthogonal group of matrices R ∈ Rn×n such that RTR = I and detR = 1.
This is the group of rotation matrices.

⇒) Lie algebra: skew symmetric matrices.

• U(n): Unitary group of matrices U ∈ Cn×n such that UTU = I .

⇒) Lie algebra: skew Hermitian matrices.

Rotation matrices are an excellent example of a Lie group. If R1, R2 ∈ SO(n) then clearly
R1R2 ∈ SO(n). In addition there exists a way to perturb a rotation matrix so that the new matrix

58



is still a rotation, ie. there is some locally “flat” (Euclidean) structure to the space of matrices.
This allows us to think of objects that lie in the tangent space to this manifold as infinitesimal
rotations. The tangent space to the Lie group at the identity defines the Lie algebra of the Lie
group. Integrating over an element in the Lie algebra builds up a particular element in the group.
The Lie algebra for SO(n) is the space of skew-symmetric matrices and the equation

R = eKt, for K = −KT

is an example of this integration. Geometrically, this concept can be visualizad as follows.

 

SymmetricMatrices ConservativeVectorField

5 x XTs S PDP
744k 11

x Sx

onoo
vz v I a a

al s o
a r

re o
r o.oso o 0

skewSymmetricMatrices RotationalVector
Fields

3D w
zD or Kd

R x Kxtok u w th

r n v r
eeth d
r r

a tix Ellit final II Iekttuuyesos.cisEsiotidluiItekt q.u.wyqsogtisisiI HE

Integratingbots toSoCs
skamEffdmes Rotations

3 3 sW Kiesow W preatesots W

a r a
v z z z

vi e
as a as a

I 1 I gift
k fuihwllE.to fIIIK io ffgfgg R eit fRiRzBl

7.4 Complex Eigenvalues and Eigenvectors
Along with representing stretching, complex eigenvalues can represent rotation of vectors as well.
If a real matrix has complex eigenvalues then they come in complex conjugate pairs. The eigen-
vectors come in conjugate pairs as well. We detail the exact mechanics of this below. Consider a
matrix A with the first two eigenvalues and left and right eigenvectors given as

λ1 = a+ bi, r1 =
1√
2

(
u+ vi

)
, ℓ1 =

1√
2

(
w + yi

)
(82)

λ2 = a− bi, r2 =
1√
2

(
u− vi

)
, ℓ2 =

1√
2

(
w − yi

)
(83)

59



with real vectors u, v, w, y. The diagonal form of the matrix is given by

A =

 | |
r1 r2 · · ·
| |



λ1 0 · · · 0

0 λ2
...

... . . . ...
0 · · · · · · 0


− ℓ∗1 −
− ℓ∗2 −

...

 (84)

=

 | |
1√
2

(
u+ vi

)
1√
2

(
u− vi

)
· · ·

| |



a+ bi 0 · · · 0

0 a− bi
...

... . . . ...
0 · · · · · · 0



− 1√

2

(
w − yi

)T −
− 1√

2

(
w + yi

)T −
...


(85)

=

 | |
u v · · ·
| |




a b · · · 0

−b a
...

... . . . ...
0 · · · · · · 0


− wT −
− yT −

...

 (86)

This last equality is not obvious so we detail it below, but first note the form of the diagonal block,
with the real parts of the eigenvalues on the diagonal and the imaginary parts on the off diagonal.
Define the 2× 2 complex matrix

U = 1√
2

[
1 1
i −i

]
. (87)

Note that U is a unitary matrix, ie. UU∗ = I . The first two dyads of the diagonalization are given
by

∑
i=1,2

λiriℓ
∗
i =

 | |
1√
2

(
u− vi

)
1√
2

(
u+ vi

)
| |

[a+ bi 0
0 a− bi

][− 1√
2

(
w + yi

)T −
− 1√

2

(
w − yi

)T −

]
(88)

=

 | |
u v
| |

[ 1 1
−i i

]
1√
2︸ ︷︷ ︸

U

1√
2

[
1 i
1 −i

]
︸ ︷︷ ︸

U∗

[
a −b
b a

] [
1 1
−i i

]
1√
2︸ ︷︷ ︸

U

1√
2

[
1 i
1 −i

]
︸ ︷︷ ︸

U∗

[
−wT−
−yT−

]
(89)

=

 | |
u v
| |

[a −b
b a

] [
−wT−
−yT−

]
(90)

Note that both

60



[
−wT−
−yT−

] | |
u v
| |

 =

[
1 0
0 1

]
, and 1

2

[
−
(
w + yi

)T−
−
(
w − yi

)T−
] | |

u− vi u+ vi
| |

 =

[
1 0
0 1

]
(91)

1√
2

[
1 i
1 −i

] [
−wT−
−yT−

] | |
u v
| |

[ 1 1
−i i

]
1√
2
=

[
1 0
0 1

]
(92)

We could write the eigenvalues as well in polar form λ1 = a+ bi = γeiθ and λ2 = a− bi = γe−iθ

where γ = |λ1| = |λ2| =
√
a2 + b2 ≥ 0. If we consider the diagonal block associated with the

complex eigenvectors we have that[
a+ bi 0
0 a− bi

]
=

[
1 i
1 −i

] [
a −b
b a

] [
1 1
−i i

]
(93)

γ

[
eiθ 0
0 e−iθ

]
=

[
1 i
1 −i

]
γ

[
cθ −sθ
sθ cθ

]
︸ ︷︷ ︸

R

[
1 1
−i i

]
(94)

remembering that eiθ = cθ + sθi. Note that R is rotation matrix. From this form, we can see
that complex eigenvalues of a real matrix correspond to rotations and stretching. The stretching
parameter is given by γ, the rotation is given by the matrix R and the corresponding angle θ, and
the plane of rotation is the subspace spanned by the vectors u and v. The relationship of the vectors
u and v (particularly the value of the inner product uTv) determines the shape of the rotation. If
u and v are orthogonal (uTv = 0), then the rotation is circular. If not, then the rotation has an
ellipsoidal shape.

Note that right and left eigenvector pairs are not unique but can be scaled by either a real or
complex value. This is because the equation λv = Av does not specify the length of v. In diagonal
form, since diagonal matrices commute, we can write (shown in here in the 2 × 2 case, but easily
extended) | |

r1 r2
| |

[λ1 0
0 λ2

] [
− ℓ∗1 −
− ℓ∗n −

]
=

 | |
r1 r2
| |

[α1 0
0 α2

] [
λ1 0
0 λ2

] [
α−1
1 0
0 α−1

2

] [
− ℓ∗1 −
− ℓ∗2 −

]
(95)

=

 | |
α1r1 α2r2
| |

[λ1 0
0 λ2

] [
− α−1

1 ℓ∗1 −
− α−1

2 ℓ∗2 −

]
(96)

Thus we can scale the right eigenvectors by αi and the left eigenvectors by α−1
i and the diagonal

form of the matrix stays the same. Note that in general αi can be either real or complex. One

61



interesting special case is the case of a real matrix with complex eigenvalues where α = eiϕ | |
1√
2

(
u− vi

)
1√
2

(
u+ vi

)
| |

[eiϕ 0
0 e−iϕ

] [
γeiθ 0
0 γe−θi

] [
e−iϕ 0
0 eiϕ

][− 1√
2

(
w + yi

)T −
− 1√

2

(
w − yi

)T −

]
=

=

 | |
u v
| |

[cϕ −sϕ
sϕ cϕ

]
γ

[
cθ −sθ
sθ cθ

] [
cϕ sϕ
−sϕ cϕ

] [
− wT −
− yT −

]
(97)

=

 | |
cϕu+ sϕv −sϕu+ cϕv

| |

 γ

[
cθ −sθ
sθ cθ

] [
− cϕwT + sϕyT −
− −sϕwT + cϕyT −

]
(98)

=

 | |
u′ v′

| |

 γ

[
cθ −sθ
sθ cθ

] [
− w′T −
− y′T −

]
(99)

with u′ = cϕu+ sϕv, v′ = −sϕu+ cϕv, w′ = cϕw + sϕy, y′ = −sϕw + cϕy.
Note that from this analysis, we can see that the vectors u and v (and also w and y) are not

unique but can be rotated by some phase ϕ. This can be derived either from the fact that diagonal
matrices commute or from the fact that 2-D rotation matrices commute. Indeed, computing the
quantity  | |

u′ v′

| |

 =

 | |
cϕu+ sϕv −sϕu+ cϕv

| |

 =

 | |
u v
| |

[ cϕ sϕ
−sϕ cϕ

]
(100)

is equivalent to changing the basis vectors that span the subspace containing u and v. It is not
obvious but a more complicated analysis (not shown) gives that u′ and v′ give the same ellipsoidal
shape of rotation as u and v.

8 Symmetric Matrices

8.1 Symmetric and Hermitian Matrices
A symmetric matrix is a real matrix S ∈ Rn×n such that S = ST . A Hermitian matrix H ∈ Cn×n is
a matrix such that H = H∗. Symmetric matrices have all real eigenvalues and can be diagonalized
by rotation matrices, ie. for every symmetric matrix S, there exists a rotation matrix R and a
diagonal matrix of real eigenvalues D such that

S = RDRT =

 | |
r1 · · · rn
| |


λ1 0

... . . . ...
0 λn


− rT1 −

...
− rTn −

 (101)

62



This means that multiplying by an n×n symmetric matrix corresponds to stretching in n orthogonal
coordinate directions. Symmetric matrices can be thought of as defining level sets of the quadratic
form h(x) = 1

2
xTSx. The vector field ẋ = Sx is then a gradient field, ẋ = ∂h

∂x

T . Intuitively,
ẋ = Sx can be thought of as flowing up a surface defined by h(x). This is also called a conservative
vector field in physics and the function h(x) is typically related to the energy of a system (or some
analog). The general condition for a nonlinear vector field ẋ = f(x) to be conservative, ie. that
f(x) = ∂h

∂x

T for some h(x) is given by ∂fi
∂xj

=
∂fj
∂xi

for all i, j. This condition is derived from the

fact that if such and h(x) exists, then ∂2h
∂xi∂xj

= ∂2h
∂xj∂xi

.

 

SymmetricMatrices ConservativeVectorField

Slxj XTSXS PDPT
HHF.az lyItx Sx

0
a o

vz v I a atail a 0
TH a je o

r o.oso o

X Xz O X 0,1270 1,22 0

aa

T.IE o

a

I9
e

s a

i

hlx had hlx

EEE
o.EE X

 

SymmetricMatrices ConservativeVectorField

Slxj XTSXS PDPT
HHF.az lyItx Sx

0
a o

vz v I a atail a 0
TH a je o

r o.oso o

X Xz O X 0,1270 1,22 0

aa

T.IE o

a

I9
e

s a

i

hlx had hlx

EEE
o.EE X

8.2 Positive Definiteness
We say a symmetric matrix S is positive definite if

xTSx > 0, for all x ∈ Rn (102)

Since we could pick x to be any ri, it follows that for a positive definite matrix, λi > 0 for all i. If
the "greater than" signs above are replaced with "greater than or equal" signs, ie. ">" is replaced
with "≥" then we say the matrix is positive semi-definite. Similarly, if we replace the "greater than"
signs with "less than" signs we say that the matrix is negative definite or negative semi-definite.

8.3 Polar Decomposition

For any matrix A ∈ Rm×n, there are two positive semi-definite matrices P = (ATA)
1
2 and P ′ =

(AAT )
1
2 (where the positive square root of each eigenvalue is taken) that are closely related to

the "shape" of the matrix A. Similarly to how the magnitude of a complex number is defined by

|z| =
√
z∗z, we can say that the "magnitude and shape" of A is defined either by (ATA)

1
2 or

63



(AAT )
1
2 . Expanding out ATA, we get

ATA =

− AT
1 −
...

− AT
n −


 | |
A1 · · · An

| |



=

A
T
1A1 · · · AT

1An
...

...
AT

nA1 · · · AT
nAn

 =

|A1||A1| cos(θ11) · · · |A1||An| cos(θ1n)
...

...
|An||A1| cos(θn1) · · · |An||An| cos(θnn)


We note that this matrix is fully determined by the size and relative orientation of the columns of
A. Another way to say this is that applying an orthonormal transformation to all the columns of A
does not change ATA. Indeed (RA)T (RA) = ATRTRA = ATA. Similarly the size and relative
orientation of the rows of A full determines AAT . We can make precise the sense in which A has

the same shape as P = (ATA)
1
2 by noting that P and A differ by a orthonormal transformation.

Indeed,

A = A(ATA)−
1
2︸ ︷︷ ︸

R

(ATA)
1
2︸ ︷︷ ︸

P

We note that we can check that RTR = I

RTR = (ATA)−
1
2ATA(ATA)−

1
2

= (ATA)−
1
2 (ATA)

1
2︸ ︷︷ ︸

I

(ATA)
1
2 (ATA)−

1
2︸ ︷︷ ︸

I

= I

and thus we have that rotating (and possibly reflecting) all the columns of the positive semidefinite
matrix P ⪰ 0 by one rotation gives A. Similarly a complex number z = |z|eiθ can be created
by starting with it’s norm |z| ≥ 0 and rotating it in the complex plane by eiθ. Similarly A can be

created from (AAT )
1
2 by applying the orthonormal transformation R′ = (AAT )−

1
2A.

A = (AAT )
1
2︸ ︷︷ ︸

P ′

(AAT )−
1
2A︸ ︷︷ ︸

R′

One can check that in fact for a square matrix, R = R′.
This leads us to the polar decomposition. A square, invertible A ∈ Rn×n can be written in a

polar form similar to the polar decomposition of a complex number z =
√
z∗zeiθ. The

A = RP = P ′R

64



where

P = (A∗A)
1
2 = V ΣV ∗

P = (AA∗)
1
2 = UΣU∗

R = (AA∗)
−1
2 A = A(A∗A)

−1
2 = UV ∗

Note that P ⪰ 0 and P ′ ⪰ 0. Note also the There are two separate versions of the polar decom-
position one with P and one with P ′. Note also the connections between the polar decomposition
and the singular value decomposition (see below). These relationships can be checked directly.

9 Singular Value Decomposition
The singular value decomposition (SVD) provides even more insight beyond the polar decompo-
sition. The SVD is very general and can apply to any matrix A ∈ Cm×n even if the matrix is
not-invertible, not diagonalizable, or even not square or full-rank. As a result, it is an often used,
powerful analysis tool. We will perform the derivation below for A ∈ Rm×n but we note that the
same derivation works for complex matrices using conjugate transposes.

To construct the SVD, we will assume that A is fat or square and analyze ATA. (A similar
construction can be done if A is tall using AAT .). We first diagonalize ATA as

ATA = V DV T

where V ∈ Rn×n is orthonormal, ie. V TV = I , and D ⪰ 0 is diagonal, real and positive semi-
definite. We know this is possible since ATA is symmetric and thus has all real eigenvalues and
orthogonal eigenvectors. We will also assume that the diagonal of D is arranged in descending
order from the largest eigenvalue to the smallest. Since A is fat or square, some portion of the
diagonal of D will be 0’s. We can take the positive square root of D to get

D
1
2 =

[
Σ 0
0 0

]
where

Σ =

σ1 · · · 0
...

...
0 · · · σk


and the block zeros have the appropriate sizes. {σi}ki=1 are called singular values and are the
positive square roots of the nonzero eigenvalues of ATA. We can enumerate V as

V =
[
V 1 V 2

]
65



where

V 1 =

 | |
V1 · · · Vk

| |

 , V 2 =

 | |
Vk+1 · · · Vn

| |


where the columns of V 1 correspond to positive, non-zero singular values and the columns of V 2

are the eigenvectors for the zero eigenvalues of ATA. We note that the columns of V 2 can be chosen
somewhat arbitrarily as long as they are orthonormal and span N (ATA). Since N (ATA) = N (A),
R(V 2) ∈ N (A) as well.

We note that any columns corresponding to repeated eigenvalues of ATA (including repeated
zeros), may be arbitrarily chosen (as long as they are orthonormal). We can now define a matrix
U ∈ Rm×m as

U =
[
U1 U2

]
where

U1 =

 | |
U1 · · · Uk

| |

 =

 | |
AV1

σ1
· · · AVk

σk

| |

 U2 =

 | |
Uk+1 · · · Um

| |


Note that the columns of U1 are orthonormal.

V T
i AT

σi

AVi

σi
=

σ2
i

σ2
i
V T
i Vi = 1,

V T
i AT

σi

AVj

σj
=

σ2
i

σ2
j
V T
i Vj = 0

The columns of U2 can be chosen to complete an orthonormal basis for Rm and thus UTU = I .
We can then write

U1Σ = AV 1

By adding (0)U2 to the left-hand side, and since V 2 ∈ N (A), we can write[
U1Σ + (0)U2 0

]
= A

[
V 1V 2

]
[
U1 U2

] [Σ 0
0 0

]
= A

[
V 1V 2

]
right multiplying by V T gives

A = U

[
Σ 0
0 0

]
V T

=
[
U1 U2

] [Σ 0
0 0

] [
V 1T

V 2T

]

66



This is the singular value decomposition. Note the following relationships

R(U1) = R(A), R(V 1) = R(AT )

R(U2) = N (AT ), R(V 2) = N (A)

Note also that the columns of U are orthonormal eigenvectors of AAT with the singular values
squared as eigenvalues. Indeed,

AATUi =
AATAVi

σi
=

σ2
i

σi
AVi = (σi)

2Ui

Thus this construction would have worked using AAT instead of ATA if desired.

9.1 Symmetric-Skew Symmetric/Helmholtz Decomposition
A square matrix A ∈ Rn×n can be decomposed as follows

A = 1
2

(
A+ AT

)
︸ ︷︷ ︸

S

+ 1
2

(
A− AT

)
︸ ︷︷ ︸

K

Note that S = ST is symmetric and K = −KT is skew-symmetric. This decomposition says that
the space of real matrices is actually the direct sum of the space of symmetric matrices and the
space of skew-symmetric matrices. Under the vectorized matrix inner product ⟨·, ·⟩ = Tr

(
(·)T (·)

)
,

we have that

⟨S,K⟩ = Tr(STK) =
∑
i,j

SijKij

=
∑
i<j

SijKij +
∑
i>j

SijKij +
∑
i

SiiKii

=
∑
i<j

SijKij +
∑
j>i

SjiKji +
∑
i

SiiKii

=
∑
i<j

Sij

(
Kij +Kji

)
+
∑
i

SiiKii = 0

If the definition of positive definite is extended to non-symmetric matrices we have that

xTAx = xTSx+ xTKx = xTSx

and thus A is positive definite if and only if S = 1
2
(A + AT ) is positive definite. In the context of

vector fields, this means that any linear vector field ẋ = Ax can be decomposed into a conservative
piece and a rotational piece.

ẋ = Ax = Sx︸︷︷︸
conservative

+ Kx︸︷︷︸
rotational

which is a special application of the Helmholtz decomposition to linear vector fields.

67



10 Matrix vs. Complex Number Analogies
The polar decomposition and the symmetric/skew-symmetric decomposition provide several deep
analogies between matrices and complex numbers. Symmetric matrices act a lot like real num-
bers and positive definite symmetric matrices act like positive real numbers. Among other things,
they have real and positive real eigenvalues respectively. Skew-symmetric matrices act a lot like
purely imaginary numbers, encoding rotational flow and having purely imaginary eigenvalues. We
can even draw a “complex plane” of sorts for matrices with symmetric matrices as the real axis
and skew-symmetric matrices as the vertical axis. As shown above, the fact that these two sub-
spaces are orthogonal is accurate. The Cartesian description of complex numbers is analogous to
the symmetric-skew symmetric decomposition and the polar description of complex numbers is
analogous to the polar decomposition.

z = a+ bi, ⇒ A = S +K

z = |z|eiθ ⇒ A = RP = P ′R

This analogy extends in the following ways detailed in the diagram. For complex numbers and
square invertible matrices and

z = a+ bi = |z|eiθ, A = UΣV T

• z ⇒ A, z∗ ⇒ AT , z−1 ⇒ A−1, z−∗ ⇒ A−T

• a ⇒ S = 1
2
(A+ AT ), bi ⇒ K = 1

2
(A− AT ).

• |z| = (z∗z)
1
2 ⇒ P = (ATA)

1
2 = V ΣV T , P ′ = (AAT )

1
2 = UΣUT ,

• eiθ ⇒ R = A(ATA)−
1
2 = (AAT )−

1
2A = UV T , e−iθ ⇒ RT ,

68



skew
A BP p'R UEVt
A P ATAz v ut

P AA'T'k uEut
R Alata's Caa'TkA uvT

B s Ecata'T
K k aA'T

at
S Porp Sym

151 5 I no

A t
K MATRIX DECOMPOSITION

CARTOON
RT ADD

a
issu.sn

skw
smznuui

poLARDEcomPA
S k

Z Z
S K Stk s K Sk Ks

Stk s k sZk Sk Ks

11 Homogeneous Tranformations
The group of homogeneous transformations - the special Euclidean group SE(3), SE(3) =
SO(3) × R3 - is the set of rotations and translations in R3. Just as rotations SO(3) have a matrix
representation in R3×3, so homogeneous transformations have a matrix representation in R4×4. For
g ∈ SE(3), we can write

g =

[
R p
0 1

]
where R is a rotation, p is a translation vector and 0 = [0, 0, 0]. Points in space in this repre-
sentation are represented by a vector p with a 1 concatenated at the bottom. Relative distances or
velocities are have a 0 concatenated.

Positions:
[
p
1

]
, Rel. positions

Velocities

[
p
1

]
−
[
q
1

]
=

[
p− q
0

]
,

[
v
0

]

11.1 Homogeneous Coordinate Transformations
We give the following example to expound homogeneous coordinate transformations. gAB repre-
sents the coordinate transformation that takes a point in frame B and transforms it into frame A.

69



We consider the following coordinate frames.

The transformation

gAB =

[
RAB pAB

0 1

]
is the homogeneous transformation that takes vectors written in the B-frame and transforms them
to the A-frame, ie. [

qA
1

]
=

[
RAB pAB

0 1

] [
qB
1

]
=

[
RABqB + pAB

1

]
The columns of the rotation matrix RAB should form an orthonormal (right handed) coordinate
system. Since

qA = RABqB + pAB.

if qB is the coordinates of the point with respect to the B-frame, then the columns of RAB should
be the coordinates of the axes of the B-frame with respect to the A frame. qA is then the sum of
RABqB and the translation vector from A to B, pAB.

Using this intuition and the noting the relationships between different axes we can get

gAB =

[
RAB pAB

0 1

]
=


1 0 0 0
0 0 1 3
0 −1 0 3
0 0 0 1

 , gBC =

[
RBC pBC

0 1

]
=


1√
2

1√
2

0 0

− 1√
2

1√
2

0 3

0 0 1 3
0 0 0 1

 ,

gCD =

[
RCD pCD

0 1

]
=


1 0 0 0
0 1√

2
1√
2

3

0 − 1√
2

1√
2

0

0 0 0 1


We can compose these three transformations to get gAD.

gAD = gABgBCgCD

=

[
RAB pAB

0 1

] [
RBC pBC

0 1

] [
RCD pCD

0 1

]
[
RAD pAD

0 1

]
=

[
RABRBCRCD pAB +RABpBC +RABRBCpCD

0 1

]

RAD =

1 0 0
0 0 1
0 −1 0

 1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2

 =


1√
2

1
2

1
2

0 − 1√
2

1√
2

1√
2

−1
2

−1
2


70



Notice that each column of RAD is the coordinates of an axis of the D-frame in the A-frame.

pAB +RABpBC +RABRBCpCD =

03
3

+

1 0 0
0 0 1
0 −1 0

03
3

+

 1√
2

1√
2

0

0 0 1
1√
2

− 1√
2

0

03
0

 =

 3√
2

6
− 3√

2



gAD =


1√
2

1
2

1
2

3√
2

0 − 1√
2

1√
2

6
1√
2

−1
2

−1
2

− 3√
2

0 0 0 1


The transformation gDA is then given by gDA = g−1

AD.

gDA = g−1
AD =

[
RT

AD −RT
ADpAD

0 1

]
=

[
RDA −RDApAD

0 1

]

=


1√
2

0 1√
2

0
1
2

− 1√
2

−1
2

− 3√
2

1
2

1√
2

−1
2

9√
2

0 0 0 1


11.2 Twist Motions
Homogeneous transformations are generated by twist motions represented by ξ = [vT , ωT ] where
v is a velocity and ω is an axis and magnitude of rotation. An element in the Lie algebra of SE(3),
denoted se(3), has a matrix representation given by ξ̂ ∈ se(3) as

ξ̂ =

[
ω̂ v
0 0

]
When we define ξ̂, we are thinking of a homogeneous transformation as the state transition matrix
for a differential equation

ẋ = ω̂x+ v[
ẋ
1̇

]
=

[
ω̂ v
0 0

] [
x
1

]
Solution: ⇒

[
x(t)
1

]
= g(t)

[
x(0)
1

]
= eξ̂t

[
x(0)
1

]
Just as R(t) = eω̂t ∈ SO(3), we have that g(t) = eξ̂t ∈ SE(3).

71



General formulas for integrating ξ̂ to get g are given by

Case 1: ω = 0 g(t) =

[
I vt
0 1

]
Case 2: ω ̸= 0 g(t) =

[
eω̂t (I − eω̂t)ω̂v + ωωTvt
0 1

]

11.3 Manipulator Transformations
11.3.1 Joint Motions

Joint motions of a robotic manipulator can be represented using twists

• Revolute Joint: A revolute joint rotates a point p around an axis ω through a point q.

ṗ = ω̂(p− q)

= ω̂p− ω̂q

Thus the twist for a revolute joint is given by ξ = [(−ω̂q)T ωT ]T . For a rotation by an angle
θ about the axis we get a transformation of

ξ̂ =

[
ω̂ −ω̂q
0 0

]
, eξ̂θ =

[
eω̂θ

(
I − eω̂θ

)
ω̂
(
− ω̂q

)
− ωωT ω̂qθ

0 1

]
=

[
eω̂θ −

(
I − eω̂θ

)
ω̂2q

0 1

]
• Prismatic Joint:

A prismatic joint slides points linearly.

72



ṗ = v

Thus the twist for a prismatic joint is given by ξ = [vT 0]T . For a rotation by an angle θ
about the axis we get a transformation of

ξ̂ =

[
0 v
0 0

]
, eξ̂θ =

[
I vθ
0 1

]
11.3.2 Forward Kinematics

The full transformation from the end (or tool) frame to the base (or stationary) frame for a manip-
ulator chain can be computed using the product of exponentials formula as follows.

• Initial configuration:
We start by laying out the manipulator in a base configuration (where all joint angles θi = 0).
We then define the initial transformation from the tool frame to the stationary frame

gST(0) =

[
RST(0) pST(0)
0 1

]
• Joint Motion Application:

The motion of each joint is then applied to the manipulator starting with the joints closest
to the tool frame and work backwards toward the stationary frame. This is to allow for the
fact that joints only affect the links further along the manipulator chain. Constructing the
full position of the manipulator in this way is illustrated in the figure below.

73



Initial configuration
S T

he gstfoI gs.to

Jones prismatic
s f T

ago
he gs.to e gstlo

T

JOINTZ Gg
S 5202

102 Gst e e gs one

JOIN TI
s T 5,95202

gs.to e e e gs o
A IQ

Oz

• Product of Exponentials:
The full coordinate transformation from the tool to the stationary frame is then given by the
product of exponentials formula

gST(θ) = eξ̂1θ1 · · · eξ̂nθngST(0)

To make the application of this formula more clear we give two examples, the SCARA manip-
ulator and a standard elbow manipulator.

1. SCARA manipulator

74



We compute the kinematics for l0 = 1, l1 = 1, and l2 = 1.

ω1 = ω2 = ω3 =

00
1

 , ω̂i =

0 −1 0
1 0 0
0 0 0

 ,

q1 =

00
0

 , q2 =

 0
l1 = 1

0

 , q3 =

 0
l1 + l2 = 2

0

 ,

Revolute (rotational) joint: for i = 1, 2, 3

ξ̂i =

[
ω̂i −ω̂iqi
0 0

]

ξ̂1 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , ξ̂2 =


0 −1 0 1
1 0 0 0
0 0 0 0
0 0 0 0

 ξ̂3 =


0 −1 0 2
1 0 0 0
0 0 0 0
0 0 0 0


Prismatic (linear) Joint:

ξ̂4 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


75



Initial Configuration:

gST (0) =


1 0 0 0
0 1 0 l1 + l2
0 0 1 l0
0 0 0 1


Product of Exponentials:

eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4 =

[
eω̂1θ1eω̂2θ2eω̂3θ3 q

0 1

]
where

eω̂1θ1eω̂2θ2eω̂3θ3 =

c(θ1 + θ2 + θ3) −s(θ1 + θ2 + θ3) 0
s(θ1 + θ2 + θ3) c(θ1 + θ2 + θ3) 0

0 0 1


q = eω̂1θ1eω̂2θ2eω̂3θ3v4θ4

− eω̂1θ1eω̂2θ2
(
I − eω̂3θ3

)
ω̂2
3q3

− eω̂1θ1
(
I − eω̂2θ2

)
ω̂2
2q2 −

(
I − eω̂1θ1

)
ω̂2
1q1

= eω̂1θ1eω̂2θ2eω̂3θ3
(
v4θ4 + ω̂2

3q3

)
− eω̂1θ1eω̂2θ2

(
ω̂2
3q3 − ω̂2

2q2

)
− eω̂1θ1

(
ω̂2
2q2 − ω̂2

1q1

)
− ω̂2

1q1

=

c(θ1 + θ2 + θ3) −s(θ1 + θ2 + θ3) 0
s(θ1 + θ2 + θ3) c(θ1 + θ2 + θ3) 0

0 0 1

(v4θ4 + ω̂2
3q3

)

−

c(θ1 + θ2) −s(θ1 + θ2) 0
s(θ1 + θ2) .c(θ1 + θ2) 0

0 0 1

(ω̂2
3q3 − ω̂2

2q2

)

.−

c(θ1) −s(θ1) 0
s(θ1) .c(θ1) 0
0 0 1

(ω̂2
2q2 − ω̂2

1q1

)
− ω̂2

1q1

=

c(θ1 + θ2 + θ3) −s(θ1 + θ2 + θ3) 0
s(θ1 + θ2 + θ3) c(θ1 + θ2 + θ3) 0

0 0 1

 0
−2
θ4


+

c(θ1 + θ2) −s(θ1 + θ2) 0
s(θ1 + θ2) .c(θ1 + θ2) 0

0 0 1

01
0

+

c(θ1) −s(θ1) 0
s(θ1) .c(θ1) 0
0 0 1

01
0


=

 2s(θ1 + θ2 + θ3)− s(θ1 + θ2)− s(θ1)
−2c(θ1 + θ2 + θ3) + c(θ1 + θ2) + c(θ1)

θ4


76



Forward Kinematics: Let θ = [θ1 θ2 θ3]
T

gST (θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4gST (0)

=


c(1T θ) −s(1T θ) 0 2s(1T θ)− s(θ1 + θ2)− s(θ1)
s(1T θ) c(1T θ) 0 −2c(1T θ) + c(θ1 + θ2) + c(θ1)

0 0 1 θ4
0 0 0 1



1 0 0 0
0 1 0 2
0 0 1 1
0 0 0 1



=


c(1T θ) −s(1T θ) 0 −s(θ1 + θ2)− s(θ1)
s(1T θ) c(1T θ) 0 c(θ1 + θ2) + c(θ1)

0 0 1 1 + θ4
0 0 0 1


2. Elbow Manipulator

We compute the kinematics for l0 = 1, l1 = 1, and l2 = 1.

ω̂1 = ω̂4 =

0 −1 0
1 0 0
0 0 0

 , ω̂6 =

 0 0 1
0 0 0
−1 0 0

 , ω̂2 = ω̂3 = ω̂5 =

0 0 0
0 0 1
0 −1 0

 ,

q1 =

 0
0

l0 = 1

 , q2 =

 0
l1 = 1
l0 = 1

 , q3 =

 0
l1 + l2 = 2
l0 = 1

 ,

77



Revolute (rotational) joint: for i = 1, 2, 3, 4, 5, 6

ξ̂1 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , ξ̂2 =


0 0 0 0
0 0 1 −1
0 −1 0 0
0 0 0 0

 ξ̂3 =


0 0 0 0
0 0 1 −1
0 −1 0 1
0 0 0 0



ξ̂4 =


0 −1 0 2
1 0 0 0
0 0 0 0
0 0 0 0

 , ξ̂5 =


0 0 0 0
0 0 1 −1
0 −1 0 2
0 0 0 0

 ξ̂6 =


0 0 1 −1
0 0 0 0
−1 0 0 0
0 0 0 0


Initial Configuration:

gST (0) =


1 0 0 0
0 1 0 l1 + l2
0 0 1 l0
0 0 0 1


Product of Exponentials:

eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5eξ̂6θ6 =

[
R q
0 1

]
where

R = eω̂1θ1eω̂2θ2eω̂3θ3eω̂4θ4eω̂5θ5eω̂6θ6

= R123R45R6

78



q = eω̂1θ1eω̂2θ2eω̂3θ3eω̂4θ4eω̂5θ5
(
− ω̂2

6q6 + ω̂2
5q5

)
+ eω̂1θ1eω̂2θ2eω̂3θ3eω̂4θ4

(
− ω̂2

5q5 + ω̂2
4q4

)
+ eω̂1θ1eω̂2θ2eω̂3θ3

(
− ω̂2

4q4 + ω̂2
3q3

)
+ eω̂1θ1eω̂2θ2

(
− ω̂2

3q3 + ω̂2
2q2

)
+ eω̂1θ1

(
− ω̂2

2q2 + ω̂2
1q1

)
+
(
− ω̂2

1q1

)
= R123R45

 0
−2
0

+R123R4

00
1

+R123

 0
1
−1

+R12

01
0

+R1

00
1


= R123R45

 0
−2
0

+

−sθ1c(θ2 + θ3)− sθ1cθ2
cθ1c(θ2 + θ3) + cθ1cθ2
−s(θ2 + θ3)− sθ2 + 1



R1 = eω̂1θ1 =

cθ1 −sθ1 0
sθ1 cθ1 0
0 0 1


R12 = eω̂1θ1eω̂2θ2 =

cθ1 −sθ1cθ2 −sθ1sθ2
sθ1 cθ1cθ2 cθ1sθ2
0 −sθ2 cθ2


R123 = eω̂1θ1eω̂2θ2eω̂3θ3 =

cθ1 −sθ1c(θ2 + θ3) −sθ1s(θ2 + θ3)
sθ1 cθ1c(θ2 + θ3) cθ1s(θ2 + θ3)
0 −s(θ2 + θ3) c(θ2 + θ3)


R4 = eω̂4θ4 =

cθ4 −sθ4 0
sθ4 cθ4 0
0 0 1


R45 = eω̂4θ4eω̂5θ5 =

cθ4 −sθ4cθ5 −sθ4sθ5
sθ4 cθ4cθ5 cθ4sθ5
0 −sθ5 cθ5


R6 = eω̂6θ6 =

 cθ6 0 sθ6
0 0 0

−sθ6 0 cθ6



79



Forward Kinematics:

gST (θ) = eξ̂1θ1eξ̂2θ2eξ̂3θ3eξ̂4θ4eξ̂5θ5eξ̂6θ6gST (0)

=

[
R q
0 1

]
1 0 0 0
0 1 0 2
0 0 1 1
0 0 0 1



=

R123R45R6 R123R45

R6

02
1

+

 0
−2
0

+

−sθ1c(θ2 + θ3)− sθ1cθ2
cθ1c(θ2 + θ3) + cθ1cθ2
−s(θ2 + θ3)− sθ2 + 1

[
0 0 0

]
1



80



81


