Lecture : Vector Fields and Linear ODEs

Winter 2021

Lecturer: Dan Calderone

0.1 Ordinary Differential Equations (ODEs) and Vector Fields

We model time evolution of a system with ordinary differential equations (ODEs). Let $x \in \mathbb{R}^{n}$ be the vector valued state of some system that changes with time. A differential equation is written

$$
\begin{equation*}
\frac{\partial x(t)}{\partial t}=\dot{x}(t)=f(x(t)), \quad x(0)=x_{0} \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector valued function of x and $x_{0} \in \mathbb{R}^{n}$ is some initial state or initial condition of the system. If the system has a control input $u(t) \in \mathbb{R}^{m}$, some signal that we get to choose over time to modify the system dynamics, we can write

$$
\begin{equation*}
\dot{x}(t)=f(x(t), u(t)), \quad x(0)=x_{0} \tag{2}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is now a vector-valued function of x and u. We often refer to differential equations of this form as vector fields cause we think of $f(x)$ as defining an evolution direction at each different point x in the state space. We can represent this graphically as a "field" of arrows. $x(t)$ evolves forward in time along these arrows from the initial state x_{0} to form a state trajectory.

The best understood differential equations are linear differential equations that have the form

$$
\begin{equation*}
\dot{x}=A x, \quad x(0)=x_{0} \tag{3}
\end{equation*}
$$

Linear differential equations are nice in that we can compute one state transition matrix or state evolution matrix that allows us $x(t)$ for any initial condition. In the simple case of (??) this transition matrix is given by $e^{A t}$ and we have that

$$
\begin{equation*}
x(t)=e^{A t} x(0) \tag{4}
\end{equation*}
$$

If A is diagonalizable, ie. $A=P D P^{-1}$ for eigenbasis P then by the spectral mapping theorem, we have that $e^{A t}=P e^{D t} P^{-1}$. If we represent x in the eigenvector coordinates, ie. $x(t)=P z(t)$ or $z(t)=P^{-1} x(t)$ this equation becomes

$$
z(t)=e^{D t} z(0) \quad \rightarrow \quad\left[\begin{array}{c}
z_{1}(t) \tag{5}\\
\vdots \\
z_{n}(t)
\end{array}\right]=\left[\begin{array}{c}
e^{\lambda_{1} t} z_{1}(t) \\
\vdots \\
e^{\lambda_{n} t} z_{n}(t)
\end{array}\right]
$$

ie. we can examine the evolution of each eigenvector separately. Suppose $\lambda=a+b i$. The exponential $e^{\lambda t}=e^{(a+b i) t}=e^{a t} e^{b t i}$. Thus a controls the decay (or explosion) rate of the signal and b (referred to as the frequency) determines the oscillation rate of the signal.

First, suppose all the eigenvalues of a real matrix A are real. The possible vector fields and state trajectories (for $A \in \mathbb{R}^{2 \times 2}$ are illustrated below.

