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Inner products
General notation: ⟨y, x⟩

Specific inner products:

• Vectors in Rn: ⟨y, x⟩ = y · x = yTx =
∑n

i=1 yixi

• Vectors in Cn: ⟨y, x⟩ = y∗x =
∑n

i=1 y
∗
i xi

• Integrable functions on f : [0, 1] → Cn: ⟨f, g⟩ =
∫
[0,1]

f ∗(t)g(t) dt

One of the fundamental uses of an inner product is to compute the 2-norm or length of a vector
by taking an inner product of vector with itself. |x|2 =

√
⟨x, x⟩. More generally, inner products

tell you how much two vectors line up with each other. Along these lines, we have the identity√
⟨x, x⟩ = yTx = |y||x| cos(θ) (1)

where θ is the angle between x and y. A way to see this directly is to apply the law of cosines to
|x− y|2

(x− y)T (x− y) = xTx+ yTy − 2xTy = |x|2 + |y|2 − 2|x||y| cos(θ) (2)

When yTx = 0, cos(θ) = 0 and the angle between the two vectors is either 90o and −90o and the
vectors are perpendicular or orthogonal. If y is a unit vector, ie. |y| = 1, then yTx = |x|cos(θ),
ie. yTx is the amount of x in the direction of y. If we then multiply this quantity by the unit vector
y again, we get the component of x in the y-direction or the projection of x onto y, projyx. If
y is not a unit vector, we can use the unit vector y/|y|. This leads to the general formula for a
1-dimensional projection matrix

projyx =
1

|y|2
yyTx = y(yTy)−1yTx (3)

More generally, if we want to project x onto a large subspace spanned by the columns of Y , we
can compute

projY x = Y (Y TY )−1Y Tx (4)
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Outer Products
The outer product of x and y is given by

xyT =

x1y1 · · · x1yn
...

...
xny1 · · · xnyn

 (5)

Outer products are clearly rank-1 and are sometimes called dyads. Note that a 1-dimensional
projection matrix is the outer product of a unit vector with itself.

Matrix Inner Products
Let X,Y ∈ Rnxm. The inner product of two matrices is∑

i

∑
j

XijYij = Tr(Y TX) (6)

where the trace operator Tr(·) is the sum of the diagonal elements. The Frobenius-norm of a matrix
is equivalent to the vector two norm |X|F =

√
Tr(XTX). 
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Norms

Properties of Norms
For a vector space V over a field F , a norm is a nonnegative-valued function ∥ · ∥ : V → R.

For all a ∈ F and all v, u ∈ V
Subadditivity/triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥

Absolute homogeneity: ∥av∥ = |a|∥v∥
Nonnegativity: ∥v∥ ≥ 0

Zero vector: if ∥v∥ = 0, then v = 0

For convenience from here on, we will use | · | for both absolute values and norms.
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Vector Norms

p-norm:
∣∣x∣∣

p
=

(∑
i

|xi|p
)1

p

, 1 ≤ p ≤ ∞

2-norm:
∣∣x∣∣

2
=

(∑
i

|xi|2
)1

2

1-norm:
∣∣x∣∣

1
=

(∑
i

|xi|

)1

∞-norm:
∣∣x∣∣∞ = lim

p→∞

(∑
i

|xi|p
)1

p

= max
i

|xi|
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Matrix Norms
Norms for matrices either think of the matrix as a reshaped vector (element-wise norms) or as an
operator on vector spaces. Norms that treat matrices as operators are called induced norms.
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Element-wise Matrix Norms

An element-wise matrix 2-norm is called the Frobenius norm,
∣∣ · ∣∣F. For A ∈ Rm×n

∣∣A∣∣F =
∑
ij

∣∣Aij

∣∣2 = (Tr(A∗A)
)1

2

Note that considering the SVD of A ∈ Rm×n (see later on)

A = U

[
Σ 0
0 0

]
V ∗, Σ =

σ1 · · · 0
...

...
0 · · · σk


and applying properties of traces (see later on), we get |A|F =

∣∣diag(Σ)
∣∣
2
, ie. the Frobenius norm

is the 2-norm applied to a vector of the singular values.

∣∣A∣∣F =

(∑
ij

∣∣Aij

∣∣2)1
2

=
(

Tr(A∗A)
)1

2

=

(
Tr
(
V

[
Σ 0
0 0

]
U∗U

[
Σ 0
0 0

]
V ∗
))1

2

=

(
Tr
([

Σ2 0
0 0

]
V ∗V

))1
2

=

(∑
i

σ2
i

)1
2

Induced Matrix Norms

Induced matrix norms intuitively measure how much a matrix increases (or decreases) the size of
vectors it acts on. The induced p, q-norm of A ∈ Rm×n gives the maximum q-norm of a vector∣∣Ax∣∣

β
where x is chosen from the unit ball of the p-norm.

∣∣A∣∣
p,q

= max
|x|p=1

∣∣Ax∣∣
q

or, equivalently.

∣∣A∣∣
p,q

= max
x ̸=0

∣∣Ax

∣∣
q∣∣x∣∣

p

Sometimes we use |·|p to refer to the induced p, p-norm. Some specific induced norm examples
(again with SVD given above).
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∣∣A∣∣
2
=
∣∣A∣∣

2,2
= max

|x|2=1

∣∣Ax∣∣
2

= max
|x|2=1

(x∗A∗Ax)
1
2

= max
|x|2=1

(
x∗V

[
Σ2 0
0 0

]
V ∗x

)1
2

= σmax

Block Matrix Multiplication
Consider a matrix A ∈ Rm×n divided up into elements, columns, and rows

A =

a11 · · · a1n
...

...
am1 · · · amn

 =

 | · · · |
A:1 A:n

| · · · |

 =

− A1: −
...

...
− An: −

 (7)

where we use the Matlab inspired notation A:j and Ai: to represent the ith row and jth column of
A respectively. We can define multiplying A by a vector x as

Ax =

a11 · · · a1n
...

...
am1 · · · amn


x1

...
xn

 =

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

 (8)

=

 |
A:1

|

x1 + · · ·+

 |
A:n

|

xn =

 [ −A1:− ]x
...

[ −Am:− ]x

 (9)

Note that we can interpret Ax as x selecting a particular linear combination of the columns of A.
The range of A is the span of the columns of A, ie. the set of vectors y ∈ Rm that can be reached
by selecting a suitable x, y = Ax. Alternatively, we can interpret Ax as taking the inner product
between x with each of the rows of A. The nullspace of A is the set of vectors x ∈ Rn such that
Ax = 0 or the set of vectors that are orthogonal to each of the rows of A.

We now consider multiplying two matrices A ∈ Rm×n and B ∈ Rn×k. Note that the inner
dimensions must match.

AB =

 a11b11 + · · ·+ a1nb1n · · · a11b1k + · · ·+ a1nbnk
...

...
am1b11 + · · ·+ amnb1n · · · am1b1k + · · ·+ amnbnk

 (10)
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Note that this same formula works if you divide A and B into sub or block matrices.

A =

A11 · · · A1n
...

...
Am1 · · · Amn

 , B =

B11 · · · B1k
...

...
Bn1 · · · Bnk

 (11)

AB =

 A11B11 + · · ·+ A1nB1n · · · A11B1k + · · ·+ A1nBnk
...

...
Am1B11 + · · ·+ AmnB1n · · · Am1B1k + · · ·+ AmnBnp

 (12)

Note that we can divide up A and B into any size sub-blocks as long as the inner dimensions of
each appropriate Aij and Bjk match. Two specific interesting cases are if we divide up A and B
into columns or rows. Dividing A into rows and B into columns gives

AB =

− A1: −
...

...
− An: −


 | · · · |
B:1 B:p

| · · · |

 =

A1:B:1 · · · A1:B:p
...

...
Am:B:1 · · · Am:B:p

 (13)

Here we are taking the inner products of each row of A with each column of B. . We could also
divide up A into columns and B into rows.

AB =

 | · · · |
A:1 A:n

| · · · |


− B1: −

...
...

− Bn: −

 =

 |
A:1

|

 [− B1: −
]
+ · · ·+

 |
A:n

|

 [− Bn: −
]

(14)

Note that here, we have computed the sum of the outer products of the matched columns of A and
rows of B.

We also note the following useful extension of this concept. Consider A ∈ Rm×n M ∈ Rn×p,
and B ∈ Rp×q. Using the inner product form above, we can compute

AMB =

A1:MB:1 A1:MB:q
...

...
Am:MB:1 Am:MB:q

 (15)

It is worth noting that [AMB]ij = Ai:MB:j Using the outer product form, we can compute

AMB =
∑
k

∑
l

 |
A:k

|

Mkl

[
− Bl: −

]
(16)
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Note that Mkl gives the scaling factor for the dyad A:kBl:. In (14), we have taken M to be the
identity. Some other common and useful examples of block matrix multiplication are given by

AB = A
[
B1 · · · Bk

]
=
[
AB1 · · · ABk

]
(17)

Note in this example, if each Bj is a column, we can think of the matrix A as transforming each
column separately.

AB =

A1
...
An

B =

A1B
...

AnB

 (18)

AB =
[
A1 · · · An

] B1
...
Bn

 = A1B1 + · · ·+ AnBn (19)

AB =

A1
...

Am

 [B1 · · · Bk

]
=

A1B1 · · · A1Bk
...

...
AmB1 · · · AmBk

 (20)

7


