Lecture : Vector Products and Matrix Multiplication

Winter 2021

Lecturer: Dan Calderone

Inner products

General notation: $\langle y, x\rangle$
Specific inner products:

- Vectors in $\mathbb{R}^{n}:\langle y, x\rangle=y \cdot x=y^{T} x=\sum_{i=1}^{n} y_{i} x_{i}$
- Vectors in $\mathbb{C}^{n}:\langle y, x\rangle=y^{*} x=\sum_{i=1}^{n} y_{i}^{*} x_{i}$
- Integrable functions on $f:[0,1] \rightarrow \mathbb{C}^{n}:\langle f, g\rangle=\int_{[0,1]} f^{*}(t) g(t) d t$

One of the fundamental uses of an inner product is to compute the 2-norm or length of a vector by taking an inner product of vector with itself. $|x|_{2}=\sqrt{\langle x, x\rangle}$. More generally, inner products tell you how much two vectors line up with each other. Along these lines, we have the identity

$$
\begin{equation*}
\sqrt{\langle x, x\rangle}=y^{T} x=|y \| x| \cos (\theta) \tag{1}
\end{equation*}
$$

where θ is the angle between x and y. A way to see this directly is to apply the law of cosines to $|x-y|^{2}$

$$
\begin{equation*}
(x-y)^{T}(x-y)=x^{T} x+y^{T} y-2 x^{T} y=|x|^{2}+|y|^{2}-2|x||y| \cos (\theta) \tag{2}
\end{equation*}
$$

When $y^{T} x=0, \cos (\theta)=0$ and the angle between the two vectors is either 90° and -90° and the vectors are perpendicular or orthogonal. If y is a unit vector, ie. $|y|=1$, then $y^{T} x=|x| \cos (\theta)$, ie. $y^{T} x$ is the amount of x in the direction of y. If we then multiply this quantity by the unit vector y again, we get the component of x in the y-direction or the projection of x onto $y, \operatorname{proj}_{y} x$. If y is not a unit vector, we can use the unit vector $y /|y|$. This leads to the general formula for a 1-dimensional projection matrix

$$
\begin{equation*}
\operatorname{proj}_{y} x=\frac{1}{|y|^{2}} y y^{T} x=y\left(y^{T} y\right)^{-1} y^{T} x \tag{3}
\end{equation*}
$$

More generally, if we want to project x onto a large subspace spanned by the columns of Y, we can compute

$$
\begin{equation*}
\operatorname{proj}_{Y} x=Y\left(Y^{T} Y\right)^{-1} Y^{T} x \tag{4}
\end{equation*}
$$

Outer Products

The outer product of x and y is given by

$$
x y^{T}=\left[\begin{array}{ccc}
x_{1} y_{1} & \cdots & x_{1} y_{n} \tag{5}\\
\vdots & & \vdots \\
x_{n} y_{1} & \cdots & x_{n} y_{n}
\end{array}\right]
$$

Outer products are clearly rank-1 and are sometimes called dyads. Note that a 1 -dimensional projection matrix is the outer product of a unit vector with itself.

Matrix Inner Products

Let $X, Y \in \mathbb{R}^{n x m}$. The inner product of two matrices is

$$
\begin{equation*}
\sum_{i} \sum_{j} X_{i j} Y_{i j}=\operatorname{Tr}\left(Y^{T} X\right) \tag{6}
\end{equation*}
$$

where the trace operator $\operatorname{Tr}(\cdot)$ is the sum of the diagonal elements. The Frobenius-norm of a matrix is equivalent to the vector two norm $|X|_{F}=\sqrt{\operatorname{Tr}\left(X^{T} X\right)}$.

Norms

Properties of Norms

For a vector space \mathcal{V} over a field \mathcal{F}, a norm is a nonnegative-valued function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}$.
For all $a \in \mathcal{F}$ and all $v, u \in \mathcal{V}$
Subadditivity/triangle inequality: $\quad\|u+v\| \leq\|u\|+\|v\|$
Absolute homogeneity: $\quad\|a v\|=|a|\|v\|$
Nonnegativity: $\quad\|v\| \geq 0$
Zero vector: if $\|v\|=0$, then $v=0$
For convenience from here on, we will use $|\cdot|$ for both absolute values and norms.

Vector Norms

p-norm: $\quad|x|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p \leq \infty$
2-norm: $\quad|x|_{2}=\left(\sum_{i}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}$
1-norm: $\quad|x|_{1}=\left(\sum_{i}\left|x_{i}\right|\right)^{1}$
∞-norm: $\quad|x|_{\infty}=\lim _{p \rightarrow \infty}\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}=\max _{i}\left|x_{i}\right|$

Not a norm

Matrix Norms

Norms for matrices either think of the matrix as a reshaped vector (element-wise norms) or as an operator on vector spaces. Norms that treat matrices as operators are called induced norms.

Element-wise Matrix Norms

An element-wise matrix 2-norm is called the Frobenius norm, $|\cdot|_{\mathrm{F}}$. For $A \in \mathbb{R}^{m \times n}$

$$
|A|_{\mathrm{F}}=\sum_{i j}\left|A_{i j}\right|^{2}=\left(\operatorname{Tr}\left(A^{*} A\right)\right)^{\frac{1}{2}}
$$

Note that considering the SVD of $A \in \mathbb{R}^{m \times n}$ (see later on)

$$
A=U\left[\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right] V^{*}, \quad \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & \sigma_{k}
\end{array}\right]
$$

and applying properties of traces (see later on), we get $|A|_{\mathrm{F}}=|\operatorname{diag}(\Sigma)|_{2}$, ie. the Frobenius norm is the 2-norm applied to a vector of the singular values.

$$
\begin{aligned}
|A|_{\mathrm{F}} & =\left(\sum_{i j}\left|A_{i j}\right|^{2}\right)^{\frac{1}{2}} \\
& =\left(\operatorname{Tr}\left(A^{*} A\right)\right)^{\frac{1}{2}} \\
& =\left(\operatorname{Tr}\left(V\left[\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right] U^{*} U\left[\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right] V^{*}\right)\right)^{\frac{1}{2}} \\
& =\left(\operatorname{Tr}\left(\left[\begin{array}{cc}
\Sigma^{2} & 0 \\
0 & 0
\end{array}\right] V^{*} V\right)\right)^{\frac{1}{2}}=\left(\sum_{i} \sigma_{i}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Induced Matrix Norms

Induced matrix norms intuitively measure how much a matrix increases (or decreases) the size of vectors it acts on. The induced p, q-norm of $A \in \mathbb{R}^{m \times n}$ gives the maximum q-norm of a vector $|A x|_{\beta}$ where x is chosen from the unit ball of the p-norm.

$$
|A|_{p, q}=\max _{|x|_{p}=1}|A x|_{q}
$$

or, equivalently.

$$
|A|_{p, q}=\max _{x \neq 0} \frac{|A x|_{q}}{|x|_{p}}
$$

Sometimes we use $|\cdot|_{p}$ to refer to the induced p, p-norm. Some specific induced norm examples (again with SVD given above).

$$
\begin{aligned}
|A|_{2}=|A|_{2,2} & =\max _{|x|_{2}=1}|A x|_{2} \\
& =\max _{|x|_{2}=1}\left(x^{*} A^{*} A x\right)^{\frac{1}{2}} \\
& =\max _{|x|_{2}=1}\left(x^{*} V\left[\begin{array}{cc}
\Sigma^{2} & 0 \\
0 & 0
\end{array}\right] V^{*} x\right)^{\frac{1}{2}}=\sigma_{\max }
\end{aligned}
$$

Block Matrix Multiplication

Consider a matrix $A \in \mathbb{R}^{m \times n}$ divided up into elements, columns, and rows

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \tag{7}\\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
A_{: 1} & & A_{: n} \\
\mid & \cdots & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & A_{1:} & - \\
\vdots & & \vdots \\
- & A_{n:} & -
\end{array}\right]
$$

where we use the Matlab inspired notation $A_{: j}$ and $A_{i \text { : }}$ to represent the i th row and j th column of A respectively. We can define multiplying A by a vector x as

$$
\begin{align*}
A x & =\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}
\end{array}\right] \tag{8}\\
& =\left[\begin{array}{c}
\mid \\
A_{: 1} \\
\mid
\end{array}\right] x_{1}+\cdots+\left[\begin{array}{c}
\mid \\
A_{: n} \\
\mid
\end{array}\right] x_{n}=\left[\begin{array}{c}
{\left[-A_{1:}-\right] x} \\
\vdots \\
{\left[-A_{m:}-\right] x}
\end{array}\right] \tag{9}
\end{align*}
$$

Note that we can interpret $A x$ as x selecting a particular linear combination of the columns of A. The range of A is the span of the columns of A, ie. the set of vectors $y \in \mathbb{R}^{m}$ that can be reached by selecting a suitable $x, y=A x$. Alternatively, we can interpret $A x$ as taking the inner product between x with each of the rows of A. The nullspace of A is the set of vectors $x \in \mathbb{R}^{n}$ such that $A x=0$ or the set of vectors that are orthogonal to each of the rows of A.

We now consider multiplying two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$. Note that the inner dimensions must match.

$$
A B=\left[\begin{array}{ccc}
a_{11} b_{11}+\cdots+a_{1 n} b_{1 n} & \cdots & a_{11} b_{1 k}+\cdots+a_{1 n} b_{n k} \tag{10}\\
\vdots & & \vdots \\
a_{m 1} b_{11}+\cdots+a_{m n} b_{1 n} & \cdots & a_{m 1} b_{1 k}+\cdots+a_{m n} b_{n k}
\end{array}\right]
$$

Note that this same formula works if you divide A and B into sub or block matrices.

$$
\begin{gather*}
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & & \vdots \\
A_{m 1} & \cdots & A_{m n}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 k} \\
\vdots & & \vdots \\
B_{n 1} & \cdots & B_{n k}
\end{array}\right] \tag{11}\\
A B=\left[\begin{array}{ccc}
A_{11} B_{11}+\cdots+A_{1 n} B_{1 n} & \cdots & A_{11} B_{1 k}+\cdots+A_{1 n} B_{n k} \\
\vdots \\
A_{m 1} B_{11}+\cdots+A_{m n} B_{1 n} & \cdots & A_{m 1} B_{1 k}+\cdots+A_{m n} B_{n p}
\end{array}\right] \tag{12}
\end{gather*}
$$

Note that we can divide up A and B into any size sub-blocks as long as the inner dimensions of each appropriate $A_{i j}$ and $B_{j k}$ match. Two specific interesting cases are if we divide up A and B into columns or rows. Dividing A into rows and B into columns gives

$$
A B=\left[\begin{array}{ccc}
- & A_{1:} & - \tag{13}\\
\vdots & & \vdots \\
- & A_{n:} & -
\end{array}\right]\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
B_{: 1} & & B_{: p} \\
\mid & \cdots & \mid
\end{array}\right]=\left[\begin{array}{ccc}
A_{1: B} B_{1} & \cdots & A_{1:} B_{: p} \\
\vdots & & \vdots \\
A_{m: B: 1} & \cdots & A_{m: B: p}
\end{array}\right]
$$

Here we are taking the inner products of each row of A with each column of B. . We could also divide up A into columns and B into rows.

$$
A B=\left[\begin{array}{ccc}
\mid & \cdots & \mid \tag{14}\\
A_{: 1} & & A_{: n} \\
\mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & B_{1:} & - \\
\vdots & & \vdots \\
- & B_{n:} & -
\end{array}\right]=\left[\begin{array}{c}
\mid \\
A_{: 1} \\
\mid
\end{array}\right]\left[\begin{array}{lll}
- & B_{1:} & -
\end{array}\right]+\cdots+\left[\begin{array}{c}
\mid \\
A_{: n} \\
\mid
\end{array}\right]\left[\begin{array}{lll}
- & B_{n:} & -
\end{array}\right]
$$

Note that here, we have computed the sum of the outer products of the matched columns of A and rows of B.

We also note the following useful extension of this concept. Consider $A \in \mathbb{R}^{m \times n} M \in \mathbb{R}^{n \times p}$, and $B \in \mathbb{R}^{p \times q}$. Using the inner product form above, we can compute

$$
A M B=\left[\begin{array}{cc}
A_{1:} M B_{: 1} & A_{1: M B: q} \tag{15}\\
\vdots & \vdots \\
A_{m: M B: 1} & A_{m: M B_{: q}}
\end{array}\right]
$$

It is worth noting that $[A M B]_{i j}=A_{i: M B:}$ Using the outer product form, we can compute

$$
A M B=\sum_{k} \sum_{l}\left[\begin{array}{c}
\mid \tag{16}\\
A_{: k} \\
\mid
\end{array}\right] M_{k l}\left[\begin{array}{lll}
- & B_{l:} & -
\end{array}\right]
$$

Note that $M_{k l}$ gives the scaling factor for the dyad $A_{: k} B_{l:}$. In (14), we have taken M to be the identity. Some other common and useful examples of block matrix multiplication are given by

$$
A B=A\left[\begin{array}{lll}
B_{1} & \cdots & B_{k}
\end{array}\right]=\left[\begin{array}{lll}
A B_{1} & \cdots & A B_{k} \tag{17}
\end{array}\right]
$$

Note in this example, if each B_{j} is a column, we can think of the matrix A as transforming each column separately.

$$
\begin{gather*}
A B=\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{n}
\end{array}\right] B=\left[\begin{array}{c}
A_{1} B \\
\vdots \\
A_{n} B
\end{array}\right] \tag{18}\\
A B=\left[\begin{array}{lll}
A_{1} & \cdots & A_{n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}\right]=A_{1} B_{1}+\cdots+A_{n} B_{n} \tag{19}\\
A B=\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{m}
\end{array}\right]\left[\begin{array}{lll}
B_{1} & \cdots & B_{k}
\end{array}\right]=\left[\begin{array}{ccc}
A_{1} B_{1} & \cdots & A_{1} B_{k} \\
\vdots & & \vdots \\
A_{m} B_{1} & \cdots & A_{m} B_{k}
\end{array}\right] \tag{20}
\end{gather*}
$$

