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Inner products

General notation: (y, x)
Specific inner products:

» Vectors inR™: (y,z) =y -z =y 'z =3 " vy
* Vectors in C™: (y,z) = y*z = > yiz;
* Integrable functions on f : [0,1] — C™: (f,g) = [, f*(t)g(t) dt

One of the fundamental uses of an inner product is to compute the 2-norm or length of a vector
by taking an inner product of vector with itself. |z|, = \/(x,z). More generally, inner products
tell you how much two vectors line up with each other. Along these lines, we have the identity

(x,x) = yle = ly||z| cos(8) (1

where @ is the angle between x and y. A way to see this directly is to apply the law of cosines to
2 —y/?

(r =) (x—y) =27z +y"y — 22Ty = |2 + |y|* — 2|2||y]| cos(0) 2)

When yTz = 0, cos(f) = 0 and the angle between the two vectors is either 90° and —90° and the
vectors are perpendicular or orthogonal. 1f vy is a unit vector, ie. |y| = 1, then y'x = |z|cos(6),
ie. y'z is the amount of z in the direction of y. If we then multiply this quantity by the unit vector
y again, we get the component of z in the y-direction or the projection of x onto y, proj,x. If
y is not a unit vector, we can use the unit vector y/|y|. This leads to the general formula for a
I-dimensional projection matrix

) 1 _
proj,x = Wny:v =y y) Ny 3)

More generally, if we want to project x onto a large subspace spanned by the columns of Y, we
can compute

projyz = Y(YTY) 'Y Ty 4)



Outer Products
The outer product of x and y is given by

1Yy 0 TiUn
vyt = | : (5)
TnlYr - Tnln

Outer products are clearly rank-1 and are sometimes called dyads. Note that a 1-dimensional
projection matrix is the outer product of a unit vector with itself.

Matrix Inner Products

Let X, Y € R™™. The inner product of two matrices is

ZZX Y, = Tr(YTX) (6)
where the trace operator Tr(-) is the sum of the diagonal elements. The Frobenius-norm of a matrix
is equivalent to the vector two norm | X |z = /Tr(X7X).

s (T- 5(&%5‘3“”
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X - % (- Yerov)x 1 i“‘.' %’] |

Norms

Properties of Norms

For a vector space ) over a field 7, a norm is a nonnegative-valued function || - || : V — R.
Forallea € Fandallv,u € V
Subadditivity/triangle inequality: lu+ o] < |lull + [Jv]
Absolute homogeneity: llav|| = |al||v]|
Nonnegativity: ||| >0
Zero vector: if [v|| =0, then v =10

For convenience from here on, we will use | - | for both absolute values and norms.
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Vector Norms

=

p-norm: ’x‘p: Z|ml|i’> , 1<p< @

=

2

1-norm: ’x‘ L=

[
2morm: e, = (;\W)
[

!
0o-norm: ‘:1:‘ = lim (E |xi|p> = max |z
o0 P—00 - i
7

‘.1‘|p:1 |g;|p:
‘xllzl I x‘oozl T 2<p< T o<p<i
|z, =1 P-norms =], =1 Not a norm
l<p<?2

Norm balls in R?

T3
R3 I
! e
X2
- —>
//
SRR

Matrix Norms

Norms for matrices either think of the matrix as a reshaped vector (element-wise norms) or as an
operator on vector spaces. Norms that treat matrices as operators are called induced norms.
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Element-wise Matrix Norms

An element-wise matrix 2-norm is called the Frobenius norm, | - ’F. For A € R™*n

1
2 N 2
Ay =3 |4,]* = (Tr(ana)
ij

Note that considering the SVD of A € R™*" (see later on)

- o - 0
A=U {O 0} vV, Y=

0 - oy

and applying properties of traces (see later on), we get |A|g = ‘diag(E)
is the 2-norm applied to a vector of the singular values.

Al = (iszijP)%
)

o ie. the Frobenius norm

o Yo o)
(o5 ) (57

Induced matrix norms intuitively measure how much a matrix increases (or decreases) the size of
vectors it acts on. The induced p, g-norm of A € R"™*" gives the maximum g-norm of a vector
}Am‘ 5 where x is chosen from the unit ball of the p-norm.

<Tr(A*A
v

)
2
Induced Matrix Norms

| ’ :maX|A:L’}
PA =1 q

or, equivalently.

[ 4]
q

|A| = max
bq z#£0 ‘:p‘
p

Sometimes we use |- |, to refer to the induced p, p-norm. Some specific induced norm examples
(again with SVD given above).



‘A‘2 - ‘A‘Q,Q = lax {Am|2

|z]2=1

N[ =

= max (z"A"Ax)
|m|2:1

1
* 22 0 * 2
" felmt (‘r ' [0 0] ' x) o

Block Matrix Multiplication

Consider a matrix A € R™*" divided up into elements, columns, and rows
ay; A1n | . | — Al; —
A= - Azl A:n - (7)
am1 - Amn ‘ e ’ - An: -

where we use the Matlab inspired notation A.; and A;. to represent the ith row and jth column of
A respectively. We can define multiplying A by a vector x as

a1 0 Qip 1 a11T1 + -+ + 1Ty
Ar = | E e E ®)
[am1 - Gmn | [T Am1T1 + ** + Apn Ty
| | Al
= |Ag| o+ + |An| 2, = : )
| | [—Am.— ]z

Note that we can interpret Ax as x selecting a particular linear combination of the columns of A.
The range of A is the span of the columns of A, ie. the set of vectors y € R"™ that can be reached
by selecting a suitable =, y = Ax. Alternatively, we can interpret Ax as taking the inner product
between x with each of the rows of A. The nullspace of A is the set of vectors x € R" such that
Ax = 0 or the set of vectors that are orthogonal to each of the rows of A.

We now consider multiplying two matrices A € R™*" and B € R™*. Note that the inner
dimensions must match.

ai1biy -+ abi, - anbig -+ arnbg
AB = : : (10)

amlbll + -+ amnbln e amlblk +--+ amnbnk‘



Note that this same formula works if you divide A and B into sub or block matrices.

All e Aln Bll e Blk:
A= . =] z (1n
Apr o Ao B, -+ B
AuBy+ -+ AuBy, - AnBu+ -+ A B
AB = : : (12)
Am1311+"'+AmnBln Am1B1k+"'+Amanp

Note that we can divide up A and B into any size sub-blocks as long as the inner dimensions of
each appropriate A;; and Bj; match. Two specific interesting cases are if we divide up A and B
into columns or rows. Dividing A into rows and B into columns gives

- Al: - ‘ o ‘ Alszl e AI:B:p
- An: - | T | Am:le T Am:B:p

Here we are taking the inner products of each row of A with each column of B. . We could also
divide up A into columns and B into rows.

o 1T [ B - | |
AB = A:l A:n = A:l |:_ Bl: _:| +---+ A:n [_ Bn: _:|
| 1 ]1|- B, — | |
(14)
Note that here, we have computed the sum of the outer products of the matched columns of A and
rows of B.

We also note the following useful extension of this concept. Consider A € R™*" M € R"*P,
and B € RP*?, Using the inner product form above, we can compute

Al:Mle Al:MB:q

AMB = : : (15)
Am:Mle Am:MB:q
It is worth noting that [AM B);; = A;. M B.; Using the outer product form, we can compute
|
AMB =33 | Aw| My [~ B -] (16)
kool |



Note that My, gives the scaling factor for the dyad A.xB;.. In (14), we have taken M to be the
identity. Some other common and useful examples of block matrix multiplication are given by

AB=A[B, -+ By =[AB, --- ABy] (17)

Note in this example, if each B, is a column, we can think of the matrix A as transforming each
column separately.

Ay AB
AB=|: | B= : (18)
A, A,B
By
AB=1[A, -+ A | : | =4Bi+--+A,B, (19)
By,
Al AlBl AlBk
AB=| : |[B1 - By =] : : (20)



